论文部分内容阅读
基于自动驾驶系统,智能汽车能实现自主行驶,可有效减少交通事故,降低交通拥堵及环境污染,是目前国内外产业界及学术界的研究热点。智能汽车的主动安全技术是其发展及应用中面临的核心问题之一。与传统有人驾驶汽车相比,装备自动驾驶系统的智能汽车可完全控制车辆运动,这对智能汽车的主动安全技术有着更高的要求。如何为智能汽车设计完善的控制策略是智能汽车主动安全技术发展中的主要难点。当前对一些危险交通场景的研究尚不完善,基于智能汽车技术仍然可以从特定维度提高交通系统的安全水平。为此本文对传统的汽车主动安全技术的研究进行了扩展,为应对一些危险的交通场景提出了主动闪避、主动减速和主动撞击的概念,进一步扩大了智能汽车主动安全的研究领域,并围绕这些概念研究了智能汽车在交通系统中面临的若干问题,设计了相应的控制策略。具体研究内容如下:(1)提出了主动闪避、主动减速与主动撞击的概念。主动闪避是指智能汽车须尽可能避免由其他汽车原因引发的潜在交通事故。目前智能汽车的防碰撞控制系统主要有自适应巡航控制、防追尾控制及紧急制动等多种控制系统,这些系统大多关注于减少由于自身因素引起的碰撞事故,较少考虑如何减少由于其他汽车原因而引发的交通碰撞事故。这类系统在实际应用中往往无法应对诸如被后方重型汽车追尾等危险交通场景。为进一步提高智能汽车安全性,本研究提出了主动闪避的概念,并关注于在紧急情况下如何控制智能汽车纵向运动来避免由其他汽车原因造成的交通碰撞事故。主要关注于以下问题:如何避免被后方汽车追尾以及如何避免与逆行汽车发生正面碰撞事故。主动减速是指智能汽车须尽可能在检测到前方道路存在侧滑风险时,及时进行减速以降低发生侧滑事故的风险。当前汽车横摆稳定性控制的研究有助于减少汽车发生侧滑事故,然而这类研究一般仅考虑在即将或已经发生侧滑时才起作用,往往忽略通过预先减速来避免事故发生。针对该问题,本研究提出了主动减速的概念,研究通过路面附着系数估计及速度规划等措施,来降低发生侧滑事故的风险。主动撞击是指智能汽车在得到授权的情况下,主动撞击被网络入侵控制的危险汽车以避免危险汽车造成更严重的社会危害。随着智能汽车及车联网技术的发展,智能汽车的网络安全问题日益严峻。当前针对智能汽车网络安全的研究大多仅考虑网络通讯的安全,极少考虑在智能汽车被网络入侵控制并存在汽车恐怖袭击风险时的应对措施。普通警用装备很难有效阻止此类可能造成严重社会危害的危险汽车。针对该问题,本研究设计了主动撞击控制器,该控制器可在必要时控制智能汽车通过主动撞击的方式,摧毁被网络入侵控制的危险汽车。(2)针对可能发生追尾碰撞及正面碰撞事故的危险交通场景,构造了追尾碰撞闪避控制系统与正面碰撞闪避控制系统。针对四轮独立驱动电动汽车构建了考虑空气阻力及滚动阻力的纵向动力学模型,并基于该模型及模型预测控制算法设计了车辆纵向运动控制器;为降低控制器计算负荷,基于PID算法开发了纵向运动控制器。通过单车道车辆追尾事故分析,结合多Agent系统蜂拥控制理论,设计了追尾碰撞闪避控制系统;针对单车追尾碰撞闪避问题,设计了包含α-Agent、β-Ageng和γ-Agent的单层多Agent蜂拥控制结构,基于Agent之间的交互关系给出了考虑速度跟踪及防追尾功能的控制协议,并构建了单车追尾碰撞闪避轨迹规划算法;针对多车队列的追尾碰撞闪避问题,设计了采用双层蜂拥控制的多Agent系统结构,基于上下两层多Agent系统的交互关系,提出了多车队列的轨迹规划算法,可协调多辆智能汽车共同闪避后方追尾碰撞。结合对车辆正面碰撞工况的分析,给出了判断发生正面碰撞风险的决策逻辑;通过分析车辆碰撞风险,设计了单车正面碰撞闪避的轨迹规划算法;开发了多车协同轨迹规划算法,可通过协调临近车辆同步运动来降低发生正面碰撞的风险;为进一步提高车辆安全水平,研究了多车优化协同轨迹规划算法,以更充分发挥不同车辆的动力性能,使异质车辆更好地闪避正面碰撞事故。通过仿真验证了控制系统在单车及多车追尾碰撞闪避及正面碰撞闪避工况下的有效性。(3)针对存在侧滑事故风险的危险交通场景,开发了考虑路面附着系数估计的速度规划算法。在低路面附着系数高曲率的道路中,受轮胎力限制,如果车速过高则极有可能发生侧滑失稳事故。但当前极少有研究考虑在这种工况下通过预先减速来降低事故风险。本文针对该问题设计了速度规划算法。建立了包含纵向运动、横向运动、横摆运动及车轮转动的七自由度纵横耦合车辆动力学模型;结合车轮动力学模型、底盘动力学模型及车轮形变模型,研究了轮胎纵向力、横向力、车轮有效半径、滑移率及侧偏角的估计方法;基于Pacejka轮胎模型分析了轮胎力利用率等对路面附着系数估计的影响机理,指出在非剧烈运动工况下路面附着系数与轮胎力的关系;利用迭代优化方法设计了路面附着系数估计算法;考虑轮胎滑移率等因素对路面附着系数的影响,设计了自适应力矩注入方法,实现在非剧烈运动工况下准确估计路面附着系数;通过对路径等距离划分,提出了考虑侧滑、侧翻及动力学性能约束的速度优化算法,并给出了优化问题的二次规划表达形式。该速度规划算法可以在变曲率弯道工况下为智能汽车估计有效的路面附着系数,使车辆在有侧滑等危险时能够及时减速,从而降低车辆在低路面附着系数道路上发生侧滑事故的风险。利用仿真测试了速度规划算法在阶跃路面附着系数变曲率弯道工况下的有效性。(4)针对有被网络入侵控制的汽车、存在汽车恐怖袭击可能的危险交通场景,设计了智能汽车主动撞击控制器。汽车的智能化及网联化极大地方便了大众出行,但也存在着网络安全危险。在美国曾发生汽车被黑客远程入侵并控制的事件,这也导致了相关车型的大规模召回。这在很大程度上增加了国内外日益严峻的汽车恐怖袭击的风险。然而传统的警用装备很难有效应对此类汽车恐怖袭击问题。为此本研究设计了智能汽车主动撞击控制器,以在得到警方授权后主动撞击被入侵且存在恐怖袭击风险的汽车。考虑轮胎纵向力及横向力等因素,建立了包含纵向、横向及横摆运动的三自由度纵横耦合车辆动力学模型;通过对车辆相对运动的分析研究,给出了主动撞击模型的表达式;通过在当前工作点进行一阶线性化展开得到了便于控制器设计的线性模型;基于模型预测控制架构设计了主动撞击控制器。通过仿真验证了被入侵汽车以直线与曲线等不同形式运动时主动撞击控制器的有效性。(5)搭建了包含线控转向及线控驱动/制动的微缩模型汽车测试平台并进行了试验测试。利用工业铝材设计搭建了微缩模型汽车的底盘结构;采用直流电机和电机驱动器设计了模型汽车的驱动系统;结合转向舵机及RS485总线搭建了模型汽车的转向部分;使用USB数据采集卡实现了模型汽车的信号采集以及电机驱动控制功能;在笔记本计算机中基于MFC架构采用C++语言设计了正面碰撞闪避控制系统的决策、规划及控制部分。进行了试验以验证所设计的正面碰撞闪避控制系统的有效性。本研究的主要贡献在于扩展了现有智能汽车主动安全的研究领域,提出了主动闪避、主动减速和主动撞击的概念,针对若干危险交通场景设计了控制策略。主要创新点在于:(1)首次研究了车联网环境下智能汽车的追尾碰撞闪避及正面碰撞闪避控制系统,可通过及时加速、制动及倒车等操作控制单车或多车避免发生追尾及正面碰撞事故。传统车辆防碰撞研究中主要关注于防止由于自身原因导致的碰撞事故。本研究进一步考虑了如何避免由于其他车辆原因导致的追尾及正面碰撞事故。(2)首次设计了考虑路面附着系数估计的速度规划算法,可根据在线估计的路面附着系数规划安全的行车速度,从而在检测到侧滑等风险后主动减速。目前相关研究中一般仅考虑通过转向及横摆力矩控制等避免发生侧滑事故,公开资料中尚未发现基于在线估计的路面附着系数进行速度规划的研究。(3)首次开发了主动撞击控制器,可在得到授权后控制智能汽车主动撞击具有社会危害的汽车。当前公开研究中尚未见到此类有关智能汽车主动撞击控制器的研究。本文对于促进智能汽车的推广及应用,提高交通系统中整体安全水平有着积极的推动作用。