物流无人机智能监控系统研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:kok671113
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
无人机因其机动灵活,使用不受地理、环境等条件限制等优势,在不同领域正在得到日益广泛的应用,如航拍、搜救、军事侦察、地形勘测等。同时,无人机应用场景的多样性与复杂性也将难免使得无人机零部件出现各种各样异常或者故障,无人机零部件运行状态是否正常将直接决定无人机能否正常运行。作为无人机系统的重要组成部分,无人机监控系统也面临着应用场景复杂性与多样性的挑战。因此,对于无人机监控系统的研究与设计有着重要的工程实际意义。本文基于无人机物流运输这一应用场景,设计了一套具备前端显示、电子地图、航线管理、数据存储以及故障诊断等功能的无人机智能监控系统,并详细介绍了无人机电机故障诊断的功能设计与实现。该监控系统总体上采用了分层结构设计:通讯层、数据层、应用层。首先,采用串口通信相关原理与技术实现了无人机与地面监控系统之间的无线通信方案;其次,使用windows下的WPF界面框架来设计监控系统的前端界面,采用C#语言编写后台逻辑代码搭建整个系统的软件框架;然后,基于Java Script脚本调用谷歌地球API接口,实现了监控系统电子地图导航、飞机航迹显示以及操作地图等功能;接着,基于MVVM数据框架实现了前后端数据解耦,采用软件设计模式思想对收发的数据进行处理包括显示飞行状态数据、发送控制指令数据、操作航线数据以及数据存储等。然后,本文引入了深度神经网络算法,设计了故障诊断模型。针对故障样本不平衡的问题采用SMOTE算法对其进行数据扩展,根据集成编程的思想以电机的五个监测量作为故障诊断模型的输入,在监控系统上实现了对电机运行状态的监控及报警功能。监控系统监测到故障会自主将故障信息上报给无人机控制系统,无人机控制系统将做出飞行策略调整,实现了智能监控功能。最后,经过与物流无人机实际试飞联调,测试结果验证了本文所设计的物流无人机智能监控系统的有效性,其运行可靠、兼容性高,提高了无人机系统的可靠性。
其他文献
随着高通量测序技术的发展,只利用序列信息预测蛋白质二级结构成为计算生物学研究的热点问题之一。当前的机器学习方法使用大量的标注样本,通过构建监督学习模型实现二级结构的预测。然而获得二级结构的标注信息往往需要大量的生物学实验和人工纠正,是一项耗时且代价昂贵的任务。本文提出只利用较少标注样本来预测蛋白质二级结构的半监督对抗生成网络模型,主要贡献包括:(1)首先,对实验所用到的数据集进行数据清洗,对数据集
目标检测作为计算机视觉的基础性研究,近年来目标检测在精度和速度方面不断提高,并且在智能驾驶、安全检查等相关方面已经部署应用。本文主要探究在大型养殖场和安防场景中目标检测的应用。前人所做的相关研究主要集中在使用传统的特征提取方法和分类器进行目标检测或采用深度网络加可见光图像的方式。这些方式都有一定的局限性,一是传统目标检测方法相对于深度学习方法精度较低,二是可见光图像在黑暗场景下将无法完成检测。所以
在数字化时代,面临诸多虚假新闻、隐藏金融诈骗团体等情报分析的新问题,本课题组构建了基于复杂网络算法进行人(欺诈者)、物、组织、真假事件及相互关系的感知、理解、预测的情报分析框架IAF(Intelligence Analysis Framework),从基于社会/物理/网络空间中人类电子足迹的大规模电商交易关联网络中,检测出符合特定模式的欺诈行为,是智能情报分析框架中理解模块的关键功能。本文围绕基于
在信息化和智能化深入普及的今天,图像超分辨率重建技术日益成熟并且在日常生活中也开始发挥着越来越重要的作用。该研究在医学成像、遥感成像和公共安防等领域有着广泛的应用前景。近年来随着深度学习的广泛应用,越来越多的超分算法采用卷积神经网络来实现重建任务。现有的算法为得到高质量的重建图片就使用很深或者很宽的网络,这样的网络训练需要占用大量的计算资源和内存消耗,很难在实际中应用;其次是算法重建图片耗时长,重
在智能化信息化深入普及的今天,人们对高分辨率图像的要求越来越高,图像超分辨率重建技术开始发挥重要作用。该研究在图像理解、语义分割以及识别等领域有着广泛应用前景与研究价值。在实际应用中,我们希望超分辨方法不仅能够重建统计意义上的高质量图像,而且能够重建视觉感知意义上的高质量图像。而现有的超分辨算法较难满足两个需求,也就是经常出现客观评价指标与主观评价指标得分不一致的问题。比如,有些超分辨方法所重建图
随着科技创新的日益发展,人类社会不断进步。机器人也成为了人们生活中的一部分,移动机器人开始从事越来越多的枯燥、乏味、具有危险性的工作。如无人餐厅、医院、工厂以及太空等一些人类无法正常工作的环境。本文针对全方位移动机器人越来越难以精确测量的电机参数问题、越来越难以精确建立的数学模型问题以及一些未知的内、外部扰动问题。本文采用自适应滑模控制、自抗扰控制、无模型自适应等控制方法,主要研究内容如下:首先,
煤炭工业长期以来是支撑俄罗斯经济社会发展的主要行业,在俄罗斯国家经济中发挥着重要作用。俄罗斯是我国煤炭进口的主要来源国之一,随着俄罗斯能源强国战略和煤炭东向战略的推行、俄罗斯国内能源消费结构的优化、俄对外贸易政策的调整以及煤运基础设施的逐步改善,俄罗斯煤炭在东亚地区市场的竞争力还将进一步提升。研究俄罗斯煤炭生产、消费、调运及国际贸易现状,定量预测2035年前俄罗斯煤炭可供出口量及运输能力,分析碳中
随着人民生活水平的提高,汽车进入到人民的生活当中。随后日益增加的交通安全问题引起人们的关注。车道线检测作为自动驾驶以及辅助驾驶系统中重要的环节,得到了大量的研究,其核心思想是准确、快速的检测出车道线的位置。传统的车道线检测方法对待检测图像进行边缘检测、阈值化处理和曲线拟合,通过提取车道线的特征检测车道线,依赖于手工操作,算法复杂度大,车道线检测效率低,且基于模型的系统很难对道路场景变化进行建模,因
近年来,在硬件计算能力大幅提高和大数据技术的助推下,以卷积神经网络为代表的深度学习技术发展迅速,为很多领域的研究提供了新的方法,尤其是图像处理领域。利用卷积神经网络人们能从摄像头拍摄的图像中获取更多有用的信息,使得搭载摄像头的自动驾驶汽车具有了更强的感知周围环境的能力,推动了自动驾驶技术的发展。本文主要研究基于视觉的面向自动驾驶汽车的车辆检测算法,主要包括以下内容:首先,本文设计了一个车载专用车辆
船舶的绿色智能化生产建造技术越来越受到关注,但由于船舱内部结构复杂,目前其喷涂工作主要由人工完成。因此迫切需要一种具有极强灵活性和避障能力,可以在狭长、有障碍环境下作业的装备。超冗余机器人拥有卓越的灵活性,具有在船舱内空间作业的工程应用潜力。本文以一种超冗余机器人为研究对象,研究其原理设计和轨迹控制策略,并进行了计算机模拟仿真验证,取得如下研究成果:针对船舱内狭长、有障碍的空间特征,在进行作业需求