C型钠肽对牛卵丘和卵母细胞线粒体生物合成与功能的影响

来源 :内蒙古民族大学 | 被引量 : 0次 | 上传用户:erikwg
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
C型钠肽(c-type natriuretic peptide,CNP)是钠肽家族成员之一,研究表明,CNP体外在维持牛卵母细胞减数分裂阻滞的同时,提高了卵母细胞发育能力,但具体机制尚不清楚。基于此,本文研究调查了 CNP对牛卵母细胞和卵丘颗粒细胞线粒体生物合成与功能的影响,为理解CNP提高牛卵母细胞发育潜能的机制提供新的研究思路。本研究采集牛卵丘卵母细胞复合体(cumulus oocyte complexs,COCs),将其在未添加(Control pre-IVM)或添加CNP(CNP pre-IVM)的前成熟液中处理6h,然后进行常规体外成熟24h,同时将未前处理的COCs直接进行体外成熟作为对照(Control no pre-IVM)。分别采用JC-1、Mito-Green、ROS试剂盒、qPCR和免疫荧光试验方法检测膜电位、线粒体分布及密度、活性氧、抗氧化因子、生物合成关键因子、线粒体编码蛋白基因基因、核编码蛋白基因和SIRT1蛋白基因。试验结果表明,相对于未成熟对照(Control no pre-IVM)和未添加 CNP(Control pre-IVM)的前成熟处理,CNP前成熟处理(CNP pre-IVM)牛COCs,在体外成熟Oh显著提高了牛卵母细胞线粒体半延伸分布的比例,体外成熟24 h显著提高了牛卵母细胞线粒体均匀分布的比例(P<0.05),而且还显著提高了牛卵丘细胞和卵母细胞线粒体膜电位和线粒体密度(P<0.05),进而增强线粒体功能;显著提高了线粒体生物合成关键调控因子、核基因组编码和线粒体基因组编码的线粒体蛋白基因及SIRT1基因的表达(P<0.05),通过影响相关基因的表达调控线粒体的生物合成;显著提高了抗氧化基因的表达(P<0.05),显著降低了活性氧水平(P<0.05),进而激活线粒体的抗氧化功能。综上所述,CNP前成熟处理不仅增强了牛卵母细胞和卵丘颗粒细胞线粒体的生物合成和功能,而且提高了抗氧化功能。
其他文献
应用于超高层的塔机,为了保证塔机自身的刚度和稳定性,需要安装附着装置。附着装置通过为塔机提供的约束,从而使塔机完成预定的功能。当前国内与塔机有关的技术标准主要关注于塔机自身的设计、制造与使用,附着装置设计结构层面缺失,偶有附着装置结构设计的规定,也是原则性的,可操作性差,且一般单位也缺乏有设计能力的技术人员。基于上述情况,本文以山东黄金国际广场SP7525平臂式塔机为研究对象,通过应变监测、参数模
背景和目的口腔癌在世界范围内恶性肿瘤中约占3%[1],其中鳞状细胞来源超过90%[2]。口腔鳞状细胞癌具有较高的继发扩散至区域淋巴结的能力[3],且发生区域淋巴结转移的患者预后明显较差[4,5]。目前对于淋巴结尤其是早期淋巴结的诊断技术敏感性特异性较差,望寻找一种敏感安全的手段对早期淋巴结进行检测,对口腔癌患者后期生存率和生活质量具有重要意义。光声成像可用于临床检测转移淋巴结[6],用于光声成像的
侵权法作为权利侵害后的救济法,起着保障和补偿受害人的重要功能,矫正正义理论一直占据着侵权理论研究的主流地位。在侵害人与受害人之间产生的所得与所失,依据矫正正义去分配导致的损害与赔偿,从而达到法律的正义。与之相对,文章通过系统介绍经济分析理论在赋予侵权损害赔偿一种经济学解释的同时,并以法律经济学理论中的财富最大化理论、帕累托最优标准和理性选择理论为指导,运用个人主义方法、实证分析、规范分析、成本与效
灵芝是一种著名的高等药用真菌,拥有悠久的历史。灵芝的次级代谢产物灵芝酸和灵芝多糖是重要的活性物质,受到广大研究者的关注。目前提高灵芝酸和灵芝多糖产量的方法很多,主要包括调整培养基成分、改变培养条件及过表达关键酶基因等。但有关灵芝采后生理和活性物质代谢方面的研究还未见报道,因此本论文分别以采后灵芝菌丝体和采后灵芝子实体为研究对象,探讨不同浓度氧气处理对灵芝的生物量、生理活性状态、代谢产物含量及代谢产
纵观灵芝发酵生产的整个进程及其研究现状,灵芝酸等活性物质产量低是发酵法不能进行商业化生产的主要原因。研究表明,通过构建高表达工程菌株可以显著提高灵芝酸的生物合成量,因此,转基因技术是灵芝酸等活性物质增产的有效策略。目前的研究多集中于通过过表达灵芝酸或灵芝多糖生物合成途径中的关键酶基因,从而实现增产目的。LaeA是丝状真菌全局性调控因子之一,参与其形态发育和次级代谢的调控。研究发现,LaeA基因对丝
利用甲烷生物合成可降解材料聚β羟基丁酸酯(PHB)对于缓解由于温室气体(甲烷)引起的全球变暖和白色污染具有重要意义。PHB是高速发展的新型生物可降解高分子材料,通过甲烷氧化菌的高密培养,PHB在细胞中积累。目前阻碍甲烷合成PHB工业化生产的主要瓶颈是甲烷在水中的溶解度低,细胞生长密度低。因此,为最大限度的实现甲烷氧化菌的高密培养,本文利用FLUENT数值模拟方法,观察研究甲烷和水气液两相流在水平管
中子是研究物质结构的理想探针。中子散射技术已在凝聚态物理、化学、生命科学、材料科学等多学科领域的研究中被广泛采用。高性能中子探测器是中子散射实验中的关键设备,对
岩石非线性断裂特征,如裂缝尖端张开位移、断裂过程区长度、黏聚裂缝抗拉强度等,在非常规储层工程问题中需要考虑。室温至200℃范围内,本文在花岗岩非线性断裂特征试验的基础
水分解是能够以氢燃料的形式存储间歇性能量(如太阳能和风能)必不可少的化学反应。水分解包括阳极氧析出反应(OER)和阴极氢析出反应(HER),其中,HER涉及两电子转移,而OER涉及四电子转移,因而OER需要更高的过电位才会进行,通常被认为是水分解的瓶颈。近年来,过渡金属基材料因其在光催化、电催化、气体传感器和锂离子电池等领域具有巨大的研究价值而受到广泛的注意。目前,一般过渡金属基氧化物的电催化性能
基于材料热释电效应的热-电转换装置,因其适用温度范围广、热-电转换速率快、低耗能、环境友好等特点,被视为最有潜力的中低温余热回收的途径之一。制备出具有高热释电系数、