论文部分内容阅读
再制造工程作为一项战略性新兴产业,是针对废旧产品进行产业化的高技术修复、改造,能够极大提高资源利用率,起到资源节约和环境保护的效果。通过先进表面工程技术制备的再制造涂层可具有良好的耐磨、耐腐蚀和耐高温性能,被广泛应用于航空航天、精密机床、冶金矿山、石油化工等高端装备中。再制造涂层/基材作为一种复杂的材料结构体系,其界面两侧异质材料的力学性能差异大,在高温高压、疲劳重载等环境服役过程中界面容易出现应力集中和裂纹扩展,开展相关的涂层界面损伤检测与评估对高端装备安全服役运行具有重要意义。自发漏磁检测作为一种新兴的无损检测方法,能够利用铁磁性材料的自发磁化现象对构件早期损伤程度进行有效评估。但是,由于涂层/基材结构的不连续性和材料的非匀质性,导致界面处的应力场分布十分复杂,裂纹尖端存在应力奇异和屈服等问题,因此仅仅依靠传统的力磁本构关系很难有效描述界面损伤的自发漏磁演化规律。本文利用弹塑性断裂力学中的内聚力概念,对经典的Jiles磁机械模型进行改进,建立适用于涂层界面损伤评估的内聚力-磁机械耦合模型,揭示界面自发磁化的物理机制;并结合典型三点弯曲载荷形式和高温服役环境详细开展了涂层界面应力集中和裂纹的自发漏磁评估研究,最终形成一套再制造涂层界面损伤自发漏磁评估方法。主要研究内容包括以下五个方面:(1)采用弹塑性断裂力学中的内聚力模型描述涂层界面损伤时的自发磁化现象,将内聚力区域中的牵引力σ作为中间变量与经典的Jiles应力磁化本构关系进行结合;同时考虑疲劳内聚力损伤演化法则,分别建立静态和疲劳载荷作用下的内聚力-磁机械耦合模型,并给出模型的自发漏磁数值计算方法。为了验证模型的有效性,对疲劳拉伸试样的涂层界面裂纹萌生时机进行预测,得到界面预制开口处内聚力单元的疲劳牵引力-位移关系曲线、损伤演化规律以及磁化累积过程;并且理论计算得到的裂纹萌生磁场强度阈值与试验测量的结果一致。最后从微观组织角度阐明了界面内聚力区域自发磁化产生的物理机制。(2)基于力学模型中常见的梁理论,给出涂层界面应力计算通式,结合Jiles应力磁化本构关系,建立梁理论-磁机械耦合模型。针对典型三点弯曲载荷作用形式,通过计算得到涂层界面应力和剩余磁化的分布规律,并提取支撑位置处的磁场强度峰值来量化表征界面裂纹扩展长度。然后基于所建立的静态内聚力-磁机械耦合模型,通过ABAQUS有限元仿真同样得到了界面裂纹扩展长度与磁场强度特征值之间的量化关系。最后通过自发漏磁无损检测技术,采集并分析了涂层界面的磁场信号变化规律,发现试验与两种模型理论计算的结果一致,并且内聚力-磁机械耦合模型预测界面裂纹长度更为精确。(3)基于所建立的疲劳内聚力-磁机械耦合模型,针对典型三点弯曲疲劳载荷形式,利用ABAQUS有限元仿真得到了涂层界面应力分布规律及其初始张开位移。通过数值计算给出界面预制开口处的内聚力单元疲劳牵引力-位移关系曲线、损伤演化规律以及磁化累积过程。在此基础上对界面疲劳裂纹的萌生时机和扩展行为进行预测,并进一步提出利用磁场增长速度dHmax/dN这一特征值来表征裂纹扩展速度。最后通过相关实验对理论分析的结果进行验证,为涂层界面疲劳裂纹的自发漏磁评估提供指导。(4)考虑高温环境对涂层界面自发漏磁检测结果带来的影响,将经典J-A模型中的饱和磁化强度Ms和平均场参数α进行修正,建立单一均质材料的热/力/磁耦合模型,然后将模型推广到涂层界面对象,并对原先的内聚力-磁机械耦合模型进行高温修正。根据热/力/磁耦合模型的理论计算以及不同温度下铁磁性材料的静载拉伸试验,探讨自发漏磁信号随应力和温度的变化规律。通过观察断口微观组织结构,从夹杂物阻碍磁畴运动的角度揭示了温度对磁信号的影响机制。最后根据理论和试验的结果对不同高温状态下涂层界面损伤的自发漏磁信号进行修正,保证了高温环境下评估结果的准确性。(5)为了将所建立的内聚力-磁机械耦合模型应用于再制造涂层界面损伤自发漏磁评估中,首先对模型在不同服役环境中的应用策略进行总结。然后以再制造冶金复合滑板为应用案例,选择合适的等离子堆焊工艺参数进行制备,简化载荷作用形式。利用ABAQUS有限元仿真得到三点弯曲载荷作用下的应力分布规律,确定危险区域;并将静力学分析结果导入FE-SAFE疲劳分析软件中,得到复合滑板疲劳寿命。基于仿真结果,利用内聚力-磁机械耦合模型对复合滑板界面处的疲劳裂纹萌生时机和扩展长度进行预测。针对再制造复合滑板加速疲劳试验,设计了一套自发漏磁无损检测工装夹具,并将试验与理论结果进行比较,最终形成一套再制造复合滑板界面损伤自发漏磁评估方法。