论文部分内容阅读
氧化铝是重要的工业原料,氧化铝工业关系国民命脉。氧化铝焙烧炉是氧化铝制备工艺流程中进行氧化铝焙烧的主要设备,其中流化床氧化铝焙烧炉相较其它炉型具有热效率高、自动化程度高、占地小等优点,已经成为发展的主流趋势。就流化床氧化铝焙烧炉本身而言,目前其采用的燃料多为重油,重油燃烧热效率低、污染大,已经不符合工业发展要求。随着气体燃料的开发普及以及运输成本的降低,其燃料选择也由液体燃料转而向更加清洁高效的高燃值气体燃料方向发展。流化床氧化铝焙烧炉内同时进行着复杂的多相流动,传热和化学反应过程,这些过程相互耦合,通过常规技术手段难以复原炉内流场,分析焙烧过程,给焙烧炉的设计改进增加了难度。因此针对流化床氧化铝焙烧炉,通过数值模拟手段对采用柴油燃料和天然气燃料时炉内焙烧情况进行了探究。以内蒙古地区某厂循环流化床氧化铝焙烧炉为研究对象,建立了几何模型,基于欧拉-欧拉双流体模型模拟炉内多相流动,考虑气固相间换热,辐射换热,建立了炉内热解反应和燃烧反应模型。模拟过程中,将焙烧原料结晶氯化铝和产物氧化铝分别简化为单一粒径,将柴油和天然气的燃烧简化为单一气体组分的燃烧,得到了不同燃料条件下炉内的颗粒浓度分布、颗粒速度分布、气体组分分布、温度分布以及化学反应速率分布等数据,分析了每一种分布的特点以及产生的原因。焙烧过程中,燃料燃烧释放的热量分为两部分给入炉膛。一部分在流化床布风板下方的床下燃烧器内燃烧,加热流化风室内的流化风,由高温流化风将这部分热量送入炉膛,另一部分燃料由布置在炉膛侧墙的床上燃烧器直接给入炉膛,在炉内进行燃烧反应,释放热量。针对采用柴油燃料的焙烧过程,探究了流化床焙烧炉床上床下燃烧器的燃料分配以及循环倍率对床内温度分布、结晶氯化铝热解速率分布等的影响。模拟了采用天然气作为燃料的焙烧过程,得到了炉内颗粒浓度分布、颗粒速度分布、气体组分分布、温度分布以及化学反应速率分布的特点并分析了产生原因。设定了两种燃烧器布置方案,一种由炉膛一面侧墙单侧给入,另一种由炉膛两面侧墙两侧给入,探究了两种方案对焙烧过程的影响,对模拟结果进行了比较分析。