【摘 要】
:
近年来,随着互联网络的飞速发展,网络性能自然引起人们的关注。互联网络的拓扑结构对网络的性能有着决定性的影响。在设计多处理器的网络拓扑时,人们最关心的问题是网络可靠性,即网络在它的某些部件(节点或者连接)发生故障的条件下仍然能够正常工作的能力。多处理器的互联网络拓扑通常被模型化为图。因此,图论中的一些经典概念,如连通度和边连通度,就被用来研究网络的可靠性。为了更精确地度量网络可靠性,人们提出了各种各
论文部分内容阅读
近年来,随着互联网络的飞速发展,网络性能自然引起人们的关注。互联网络的拓扑结构对网络的性能有着决定性的影响。在设计多处理器的网络拓扑时,人们最关心的问题是网络可靠性,即网络在它的某些部件(节点或者连接)发生故障的条件下仍然能够正常工作的能力。多处理器的互联网络拓扑通常被模型化为图。因此,图论中的一些经典概念,如连通度和边连通度,就被用来研究网络的可靠性。为了更精确地度量网络可靠性,人们提出了各种各样的高阶连通性的概念,如super-λ性(super-κ性)、hyper-λ性(hyper-κ性)、限制边连通性、超限制边连通性等等。本文主要研究正则双轨道有向图的弧连通性问题和正则双轨道图的超边连通性问题。第一章,我们介绍了研究背景和一些相关的基本概念,并对各类边连通问题的研究与现状进行了一定程度的回顾。第二章,我们研究了正则双轨道有向图的弧连通性问题,证明了对给定正整数m,k (1 < m k)存在正则度为k,弧连通度为m的双轨道有向图,进一步地,给出了一个连通的正则双轨道有向图是极大弧连通的充分条件。第三章,研究了正则双轨道图的超边连通性问题,主要结果是证明了一个连通且围长g(G) 6的正则双轨道图是超边连通的。
其他文献
本文从小微企业的人员招聘工作的现状出发,运用国内外招聘的相关理论来对小微企业人员招聘工作进行研究和分析。分析了企业在招聘方面存在的一些问题。通过对小微企业在招聘工作中存在问题的分析,给出了一些相应的解决措施,从而为小微企业在招聘工作中提供一定的建议,提高小微企业招聘工作的有效性。
爱因斯坦在1925年预言:在适当的条件下,全同的Boson型粒子会在同一最低动量态上宏观聚集的现象被称为玻色-爱因斯坦凝聚(简称BEC)。BEC作为一种宏观量子态的真正实现是以1995年7月美国Wieman小组关于87Rb原子的玻色-爱因斯坦凝聚报告为发端的,这是自上一世纪二十年代以来近七十年中实验物理学最重要之一。现在的激光冷却和俘陷技术已远不止纯光学手段一种,早已发展到磁光联合操作阶段了,这为
为研究网络可靠性,国际上提出了各种连通性的概念,如k-限制性边连通度(或点连通度),圈边连通度,圈点连通度等在有向图中一个非平凡强连通分支全少包含两个点,从而包含一个全少含有两个点的有向圈对个强连通有向图D=(V(D),A(D)),如果D-s全少有两个强j生通分支含有有向圈,则点割s(?)V(D)足D的一个圈点割,圈点连通度Ke(D)足最小圈点割的基数,在这篇论文中,我们研究有向笛卡尔乘积图D=D
随着信息网络的飞速发展,网络中的许多理论性问题越来越来引起人们的重视.比如说,网络中的节能与容错度.无线传感网络是由大量的传感器组成的,它们相互合作,感应,收集和处理原始信息,并且将处理过的信息传递给观察者.不同于有线网络,无线传感器网络没有任何实际的框架.在工作中,如果每一个感应器都将它接收到的每一个信息传播出去,就可能产生很多的麻烦.首先,它是很浪费能量的,这对于无线传感器网络是很重要的,因为
化合物的结构通常用多边形图来表示,称为该化合物的分子图.研究发现,化合物的形成过程中所产生的热量与HMO全π-电子能量是密切相关的.事实上,已经经过反复验证HMO全π-电子能与共轭化合物在形成过程中所产生的热量吻合的很好.于是,我们经常会通过计算它来得到化合物分子的能量.化合物分子的全π-电子能量是其化学构造和它稳定性的一个桥梁,因此研究化学图的全π-电子能有着深刻的理论意义和实际意义.本文主要研
本文将插值系数的方法和有限体积方法相结合求解一类半线性椭圆方程.首先,给出非协调P1四边形元插值系数有限体积方法,并考虑四边形网格的两种对偶剖分,它们分别是无重叠型对偶剖分和重叠型对偶剖分.其次运用连续性论证方法分别得到基于四边形网格的该方法在H1范数下达到了最优收敛阶.基于矩形网格的该方法的梯度逐点误差具有超收敛性.最后数值实验验证了上述理论分析结果.数值实验也表明基于四边形网格上的非协调P1元
为揭示乌鲁木齐地震断裂带冷泉水体中古菌群落多时间尺度变化规律,以及确定对古菌群落变化产生影响的地球化学因子,本实验对该泉水进行定期采样,并监测其中Rn、硫化物、CH4、CO2、He、F、Hg等7种主要化学元素;采用微孔滤膜法收集泉水菌体,使用SDS-酶解法提直接提取样品总DNA,嵌套式PCR扩增古菌16S rDNA基因V3区,变性梯度凝胶电泳(DGGE)检测古菌群落结构的变化,所得条带的光密度信息
设G是一个连通图.其顶点数n≥4,最小度为δ,半径为r,则有δr≤(?),等号成立当且仅当下面(1), (2), (3)三式之一成立:(1) G是K5,(2) G~= K5\M,这里M是一个完美匹配,当n是偶数,(3)δ= n - 3,△≤n - 2,当n为奇数.这一结论解决了图的边连通度和半径的乘积相关的一个猜想,是由Sedlar, Vukiˇcevi′c,Aouchice和Hansen [14
在组合数学领域,杨图(Young diagram)是非常重要而且具有广泛影响的组合对象之一.本文在杨图(Young diagram)的基础上,介绍并研究了一种新的组合对象—置换杨表(permutation tableau).置换杨表本质上是A. Postnikov在研究完全非负Grassnann元胞及其元胞分解时所定义的]-图表(]-diagram)的一个子集. L.K. Williams和E.S
拓扑指标是定义在化合物分子图(骨架图)上的数值描述符.本文主要研究了一类具有完美匹配和奇长度直径的树的互补Wiener数和k-环螺旋链的超-Wiener指标.设G = (V (G),E(G))是一个连通图,则图G的互补Wiener数定义为(?),其中d(u,v|G)为图G中u和v两点间的距离, d为图G的直径;超-Wiener指标定义为(?),其中d(u,v)为图G中u和v两点间的距离.本文共分为