海杂波背景下的混沌小信号检测方法研究

来源 :南京信息工程大学 | 被引量 : 0次 | 上传用户:AABBCCPANJIANHUA
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
海杂波信号作为一类典型的雷达干扰回波,它是指海面雷达的后向散射回波,易受到各种外部自然因素影响,如风、潮汐、浪涌等,其物理机理复杂多变,非高斯、非线性和非平稳特性显著,容易对雷达目标检测造成干扰。随着海浪机理以及海杂波特性研究的深入,研究人员发现海杂波存在混沌特性。研究海杂波背景下的混沌小信号检测方法,对建立海洋安全观测监测、海面目标检测系统具有重要的理论研究和应用价值。为了提高海杂波背景下的混沌小信号检测模型检测精度,利用变分模态分解算法(VMD)弥补经验模态分解存在的模态混叠、虚假分量和端点效应缺陷,本文分别提出两种基于变分模态分解的海杂波去噪算法。为了弥补传统微弱信号检测方法在混沌背景下的检测能力较弱的缺陷,考虑到支持向量机算法(SVM)较擅长预测,引入寻优能力较佳的免疫算法(IA),提出了一种基于IA-SVM模型的混沌小信号检测方法。从合理利用噪声角度出发,结合随机共振理论,利用寻优收敛性好的变种差分进化算法,提出了一种基于变种差分进化算法的随机共振混沌小信号检测方法。具体研究如下:为了分析海杂波的混沌特性,针对如何选择混沌系统相空间重构参数的问题,考虑到确定相空间参数(嵌入维m和时间延迟?)有两个主要研究方向,一是分别研究这两个参数,采用不同方法确定这两个参数,较为繁琐;二是研究嵌入窗?w。研究表明影响重构相空间质量的主要是联合嵌入维和嵌入窗宽。综合分析各类相空间参数确定方法结果基本一致,本文选用较为成熟的C-C法确定相空间嵌入窗,确定嵌入维为5,时间延迟为1。为了提高混沌小信号检测模型的检测精度,本文分别提出了基于VMD的海杂波混合去噪算法和基于VMD的海杂波分布式去噪算法。利用VMD将海杂波信号分解为具有不同中心频宽的变分模态分量(VMF),分析分解信号的自相关特性。基于VMD的海杂波混合去噪算法对噪声信号进行小波硬阈值去噪处理,基于VMD的海杂波分布式去噪算法结合瞬时半周期(IHP)和小波硬阈值算法对所有分量信号进行都去噪处理,接着对各分量信号重构后完成去噪,最后利用最小二乘支持向量机(LSSVM)海杂波预测模型,比较去噪前后的预测均方根误差判断其去噪效果。实验结果表明,两种去噪算法的去噪效果显著,预测的均方根误差均能降低两个数量级。针对传统微弱信号检测方法在混沌背景下检测能力较弱的缺陷,本文提出了一种基于IA-SVM模型的混沌小信号检测方法。经求嵌入窗宽构建混沌序列相空间后,利用IA算法的寻优能力对SVM中影响预测精度的惩罚系数、核函数以及不敏感损失参数这三个参数进行优化,从而建立混沌时间序列的预测模型,从预测误差中检测混沌噪声背景中的混沌小信号。仿真实验以Lorenz系统的混沌数据和实测雷达的海杂波作为背景噪声,分析IA-SVM模型预测信号信噪比和均方根误差,来判断模型预测性能效果,并与其他预测模型对比。实验验证结果表明,预测信号的均方根误差为0.0001463(信噪比为-104.2473d B),通过对比分析其他几种模型预测的均方根误差,在信噪比更高情形下的IA-SVM模型的预测误差更小,预测性能更好,更接近实际值。针对传统随机共振小信号检测无法对多参数进行同步调优的缺陷,本文提出了一种基于变种差分进化算法的随机共振混沌小信号检测方法。利用变种差分进化算法对Duffing振子的随机共振系统参数a,b,k进行寻优,以系统输出信噪比为寻优问题的目标函数。为了验证算法的可行性,分别进行低频和高频小信号输入的仿真实验,在低频小信号检测实验中,输出信噪比较混沌变步长萤火虫优化算法平均提升1.98d B;高频小信号检测实验中,结合外差式随机共振理论,能够准确恢复出高频小信号对应低频段处的小信号,进一步推导出高频小信号的存在;对实测海杂波数据进行仿真实验,实验结果表明该方法能够有效地检测出淹没在海杂波背景下的混沌小信号。
其他文献
随着下一代无线通信系统在通信速率、容量方面的大幅提升,毫米波天线对性能设计提出了新的挑战,如何实现低成本、可重构、高增益、高效率、宽带宽的毫米波天线是目前亟需解决的问题。介质谐振器天线(DRA)因其极低的欧姆损耗,较高的辐射效率(一般能达到90%以上)和较低的成本,成为了毫米波天线设计的选择方案之一。然而DRA还需要同时解决带宽、增益以及可重构的问题,基于此本文主要针对于宽带、高增益的可重构DRA
雨情识别技术一直以来都是气象水文领域的研究热点之一,随着人工智能技术的发展,信号识别算法的高关注度为实现创新有效的雨情识别提供可能。雨声信号的变化可反演雨情的发展及消散过程,对及时预警防灾减灾具有重要意义。为了识别降雨情况,本文设计了一种基于声音信号的雨情识别系统。本系统采用带外壳的雨声采集器,所获雨声信号段共计1500个,其中小雨(0.1~9.9mm)、中雨(10~24.9mm)和大雨(25~4
微带天线具有低轮廓、轻质量、低成本和易于与微波电路集成等优点,其被广泛地应用在雷达、卫星等无线通信领域。随着无线通信技术的不断进步,通信设备朝着小型化、集成化、宽带化和智能化的方向不断发展,微带天线的窄带特性限制了它在众多需要宽频带情况下的应用。微带窄缝隙天线作为微带天线的一种,不仅拥有传统微带天线的优点,同时也易于与其他物体共形,同样面临带宽较窄的问题。为此科研人员做了大量的研究工作。本文共设计
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)是最优秀和发展前景的调制技术,已经被大多数无线和有线通信标准所采用。OFDM具有一系列的优点,首先频谱的利用率高并具有抗频率选择性衰落能力,还可以消除符号间的干扰,能够恢复由于信道的频率选择性而丢失的符号从而具有一定的纠错能力,信道均衡和计算效率较高。但是OFDM系统也有一系列的缺点,对同
随着卫星导航、通信等领域的迅猛发展,无线系统抗干扰能力受到国内外学者的广泛关注。其中,调零天线是抑制定向电磁干扰的重要手段。调零天线包括单元调零天线和阵列调零天线。本文利用功率传输效率最优化理论来研究阵列调零天线相关问题,提出了在多个目标方位实现多零陷的阵列调零天线。本文的主要研究内容包括:1、首先,设计了一款工作在2.45GHz的一维调零阵列天线。一维阵列天线由8个矩形贴片天线单元线形排列构成。
随着我国“空天一体化”战略的不断推进,卫星通信的作用和地位不断被强化。传统的卫星通信系统通常采用有中心的管理调度方式,地球站入网、退网、业务申请、资源分配等都通过统一的中心站进行管理调度,这种方式可以最大化地利用卫星通信资源,但是这种典型的集中式管理体制也带了较大的风险,由于中心站负责承担系统的控制、调度和管理等功能,系统对其依赖性极强,导致中心站造价成本高昂、移动性差。在军事对抗环境下,作为系统
微带平面阵列天线以成本低、体积小、重量轻等优势,在无线卫星通信、导弹制导和船舶导航等应用场景获得了广泛的使用。X波段也是军用火控雷达、广播卫星通讯、船舶导航和气象雷达的常用频段。以船舶导航为例,随着捕鱼及航海的不断发展,我国对小型渔船的需求量逐年递增,天线也呈现出小型化和低成本的发展趋势。因此本文主要针对X波段微带平面阵列天线进行了研究与设计,论文主要研究内容包含以下几个部分:(1)基于天线极化理
圆极化天线可以接收多种极化形式的来波,同时圆极化波束能被多种极化形式的天线所接受;而极化可重构天线在这一方面相比于圆极化天线的优势更加明显。微带贴片天线具有小体积,低成本,易于加工,牢固可靠等优点,被广泛应用于载体共形等方面,同时因为其多样化的性能以及能和有源器件及电路相集成的特点,是一种非常重要的天线形式;同时相比于单个天线,阵列天线具有提高辐射的增益,消除共信道的干扰等优点,因此微带阵列天线因
为适应现代通信设备的需求,天线的研发主要朝着几个方面进行,即减小尺寸、宽带和多波段工作、智能方向图控制。随着电子设备集成度的提高,通信设备的体积也越来越小,这时天线对于整个设备就显的过大,这就需要天线减小自身尺寸。然而,在不明显影响天线的增益和效率的同时减小天线的尺寸却是一项艰巨的工作。电子设备集成度提高,经常需要一个天线在较宽的频率范围内来支持两个或更多的无线服务。本文基于功率传输最大化方法的天
随着无线通信系统技术的逐渐提高,人们对天线结构和性能的要求也越来越严格。在雷达、隧道通信、导航和矿井探测等场合应用中,宽频带、高增益和方向性已经成为评判天线性能优劣的重要指标。端射天线与其他天线相比,具有增益高、方向性好的优点,用来测向和远距离通信效果好。常规的端射天线结构包括对数周期天线和八木天线。但传统的对数周期天线和八木天线由于体积大,难以集成,无法满足现在的实际需求。因此国内外学者便将八木