【摘 要】
:
车辆路径规划是智能交通中的重要研究方向之一,其研究内容主要包括路网模型、交通信息预测和路径规划算法等。如何充分利用道路交通信息,动态且快速地为目标车辆提供一条合理高效的行车路线具有非常重要的意义。论文将深度强化学习融入路径规划算法,对车辆动态路径规划问题进行了研究。论文的主要工作如下:论文针对现有路径规划中对路况分析不全面的问题,构建了基于层次分析法的道路效率指标评价模型,综合分析各种影响道路通行
【基金项目】
:
国家重点研发计划:基于物联网技术的智慧城市信息-物理融合模型及网络原型系统研究(课题编号:2018YFB2101303);
论文部分内容阅读
车辆路径规划是智能交通中的重要研究方向之一,其研究内容主要包括路网模型、交通信息预测和路径规划算法等。如何充分利用道路交通信息,动态且快速地为目标车辆提供一条合理高效的行车路线具有非常重要的意义。论文将深度强化学习融入路径规划算法,对车辆动态路径规划问题进行了研究。论文的主要工作如下:论文针对现有路径规划中对路况分析不全面的问题,构建了基于层次分析法的道路效率指标评价模型,综合分析各种影响道路通行效率的静态和动态指标,得到各路段的预估通行代价。针对途经点约束下的路径规划问题,论文结合模拟退火方法,研究了一种全局路径规划算法,选择了较低通行代价的路径,提高了算法的搜索效率。通过在城市路网模型中进行仿真,论文算法的运行时间较两种对比算法分别下降了77%和19%。最后,搭建智能交通路径规划演示平台,实时获取路况信息,直观地展示了动态路径规划相关功能。在上面算法的基础上,论文针对车辆行驶过程中需要根据交通信息变化对后续行车路径进行动态调整的问题,研究了一种基于深度强化学习的动态路径重规划算法。算法以深度Q网络为基本框架,动态感知目标车辆及路网信息,同时通过对路网信息变化的不断学习,估计交通流变化状况,利用路径重规划模型对当前路径进行评估与决策,进行全局路径重规划以获得更优的线路。论文通过SUMO搭建了不同的仿真场景对算法性能进行评估,并与传统算法进行了比较。实验结果表明,论文算法在城市路网环境下使目标车辆的平均旅程时间降低了36.7%,同时,在等待时间占比和平均行驶速度等方面均得到了优化。
其他文献
随着科技的发展与工程需要的多元化,计算技术在图像识别领域中的应用越来越广泛。其中卷积神经网络具有优秀的图像识别效果,相比于常规图像识别算法,它具有更为有效的特征提取结构以及识别结构,已成为图像识别领域中主要技术之一。众所周知,图像样本的质量、数量是影响图像识别的关键因素,但是在一些重要专业领域,如遥感、雷达、医疗等,不仅面临获取大量、高质量的图像数据存在困难,更面临对这些专业图像标注的专业人力不足
众包是一种分布式的计算范式,它可以整合社会中的群体智慧来完成一些计算机或非专业人员无法完成的复杂任务。共享经济社会的形成,推动了一种基于位置的众包服务应用——空间众包的出现和发展。它在便利生活、智能交通等生活领域贡献了巨大价值。空间众包中基本且核心的研究方向包括任务分配和用户隐私保护,但以往的研究大多仅关注众包任务和工人,而忽略了需要不同专业领域知识的多技能任务分配。其次,由于空间众包是基于位置的
近年来,移动智能设备(如智能手机和平板电脑)在商业上取得了越来越大成功,已经成为全球数十亿人日常生活中不可或缺的元素。移动设备不仅用于传统的通信活动,如语音通话和信息通信,还用于大量的多用途应用,如金融、游戏、视频会议和购物等。移动用户日常上网行为不仅带来了流量的爆炸式增长,同时也使用户行为呈现出复杂性和多样性。因此,深入分析移动应用流量,识别用户异常行为对移动互联网的安全防范具有重要意义。本文的
随着网络环境日益复杂,越来越多网络协议开发者选择构建私有协议来进行数据的发送和接收,以满足其个性化需求。但是也有许多恶意应用程序利用私有协议来进行网络数据的传输,大大降低被破解的可能性,同时让此类非法活动变得更加隐秘,给网络安全带来巨大威胁。因此,对这些未知协议进行分析和处理,是网络安全领域亟需解决的问题之一。采用传统的从软件层面逆向分析二进制代码的方式不仅实现复杂、可移植性低、无法分析加密程序,
在人类探索世界的过程中,存在着许多无法到达的场所,而足式机器人由于其承载能力强、稳定性好、适应各种不同地形而成为研究重点,六足机器人由于其相对四足机器人可以实现更好的稳定性,而与八足机器人相比,六足机器人机体结构又更为简单,因此有更简单的运动控制策略,因而有其重要应用。本文设计构建了六足机器人模型,从足尖轨迹规划、中枢模式发生器、深度强化学习三种运动控制方法对机器人运动控制策略进行了研究与仿真。本
新能源汽车代表着汽车电动化与智能化的发展走向。四轮轮毂电机独立驱动的汽车方案有着简洁的传动机构和更高的可控自由度,其动力系统一直是研究的热点。本文以四轮轮毂电机独立驱动的电动汽车为研究对象,对整车动力系统方案、动力系统域控制器平台设计展开研究。主要研究内容如下:(1)针对电动汽车建立动力系统仿真计算模型,用于分析其动力性能指标,主要包括分析该汽车动力驱动系统对驱动力矩、电机转速、动力驱动总功率等需
近几年各类新兴技术例如量子科技、区块链以及人工智能迅猛发展,给传统网络带来了极大的挑战,而网络虚拟化技术为传统网络能满足多元化的网络需求带来了可能性。本文主要从以下两个方面对虚拟网络映射问题进行研究:针对深度卷积神经网络的计算负载会使终端设备产生大量能耗的问题,本文将深度卷积神经网络的计算任务作为虚拟网络请求,将它映射到多个终端设备上,由多台终端共同分担计算来减少对自身的损耗。在实现时将神经网络每
同步定位与建图(Simultaneous Localization And Mapping,SLAM)已经在机器人视觉领域进行了几十年的研究,但是基于传统建图方法下的深度估计花费时间长,很难达到工程上要求的实时性,而且地图中不具包含义信息,使得三维建模在应用方面的拓展受阻。基于这些问题本文设计了一种基于深度学习的单目图象深度估计的方法,提高建图速度,同时设计了一种融合的语义分割网络,让整个系统能够
网络服务器和个人主机经常受到网络黑客的威胁,他们使用恶意制作的数据包来利用软件漏洞并获得系统管理员权限。尽管当前研究人员针对软件漏洞及相应防御方法进行了大量的研究,但此类攻击仍然是安全领域最大的问题之一。随着数据执行保护和W⊕X的广泛部署,攻击者被迫在二进制文件中重用现有的代码片段。代码重用攻击可以执行任意的图灵完备计算而不用注入任何恶意代码。其中,面向返回的编程(ROP)已经成为攻击者规避最新操
根据图像进行三维重建是计算机视觉领域热门的研究课题,被广泛运用于自动驾驶,机器人导航,虚拟现实,增强现实等应用之中。传统的三维重建方法通常依赖于特定的硬件设备或者多视角图像,这在实际运用中是容易受限的。同时,传统的三维重建方法多用点云表示重构的三维模型,这在数据存储和处理上是不方便的。而在实际的应用场景中,我们周围的环境通常具有明显的平面结构,比如地面,建筑物表面等等。因此,用平面结构来解析三维场