【摘 要】
:
以美国以美国和俄罗斯为代表的军事强国围绕快速进出空间,定点水平着陆,可重复使用等目标,大力发展高超声速飞行技术。高速持续飞行,飞行器表面的气流由于摩擦等原因受到阻滞,动能转变为热能,使飞行器表面温度急剧升高。热防护材料发汗冷却技术受到越来越多的关注,碳纤维增韧陶瓷基复合材料耐高温和耐腐蚀等优越性已经越来越多的应用于航空航天热防护系统中。但是,不同的纤维末端会同时暴露于C/SiC表面之上,纤维末端的
论文部分内容阅读
以美国以美国和俄罗斯为代表的军事强国围绕快速进出空间,定点水平着陆,可重复使用等目标,大力发展高超声速飞行技术。高速持续飞行,飞行器表面的气流由于摩擦等原因受到阻滞,动能转变为热能,使飞行器表面温度急剧升高。热防护材料发汗冷却技术受到越来越多的关注,碳纤维增韧陶瓷基复合材料耐高温和耐腐蚀等优越性已经越来越多的应用于航空航天热防护系统中。但是,不同的纤维末端会同时暴露于C/SiC表面之上,纤维末端的多样性会引起吸水时间的滞后效应,进而影响发汗冷却系统效率,本文主要研究了C/SiC表面微织构制备,以及微织构对不同纤维末端C/SiC表面亲水性的影响规律,主要研究内容如下:首先,分析了典型纤维末端C/SiC次表面微观流动通道的特点,基于washburn方程建立了两种典型的水滴吸附模型,两种典型模型对应两种典型的C/SiC表面.首先对单个样本的水滴吸收时间进行了研究,揭示了水滴体积和水滴吸收速度之间的依赖关系。考虑到C/SiC流动通道的随机性,又进行了2000次重复试验,对实验结果进行统计学分析。结果表明柱形纤维末端的C/SiC表面的吸水时间滞后于圆形纤维末端C/SiC表面的吸水时间。针对圆形纤维末端和柱形纤维末端C/SiC表面存在吸水滞后这一问题,提出采用激光建立表面微观织构来消除C/SiC吸水滞后效应。其次,为了加工出亲水性可控的C/SiC表面,根据表面润湿基本原理,以及纤维末端的分布规律和激光路径的排布设计出三种典型的微织构表面。研究了激光加工微织构过程中出现的典型表面的缺陷形式,通过分析提出了抑制这些表面缺陷的若干工程化建议。考虑到参数直接影响表面的性能,重点讨论四种表面特征参数(Sz、Sku、Ssk、Sq),分析C/SiC表面对激光参数的响应规律,基于分析结果从Sz、Sku、Ssk、Sq中选取能够直接反应表面微织构变化特征参数作为下一章将要建立的具有微织构的C/SiC表面吸水时间预测模型的基本参数。再次,经过表面特征参数的分析,综合考虑了各种特征参数的变化趋势,选取了Sz作为基本参数。通过检测激光加工前后C/SiC表面以及次表面化学元素组成的变化,讨论了C/SiC表面在激光加工中可能发生的变化。建立了具有典型微织构的C/SiC表面吸水时间预测模型,推导出具有微织构C/SiC表面吸水时间与激光扫描遍数之间的关系,具有微织构C/SiC表面吸水时间与微织构的疏密程度之间的数学关系。结果表明表面微织构可主动调控C/SiC表面的吸水速度,进而缩短吸水滞后时间。结论可为主动调控C/SiC表面亲水性以及提高冷却系统效率提供参考。
其他文献
从陶瓷脆性的结构本质出发,将非晶结构引入到陶瓷材料中,意在通过打破晶格结构,弱化原子间键合,使陶瓷产生新的变形机制,来改善陶瓷的脆性,实现宏观变形。本文主要研究了Al2O3-ZrO2-Y2O3非晶陶瓷的制备和中温弹塑性变形,并对变形机理进行了分析。通过二步热压有效地解决了析晶与致密化之间的竞争,可得到相对密度高达97.7%、保持均匀非晶相的陶瓷块体。相比于同组成的多晶陶瓷,非晶陶瓷具有结构无序、低
噪声对非线性系统的动力学行为有重要的影响。因工程背景较为广泛,噪声导致的多稳态系统的随机P分岔和相干共振等现象,受到人们关注。同时,随机非线性动力学理论在某些临床疾病机理揭示、辅助诊断和治疗方面的潜力,逐步引起人们的重视。本文主要研究了两类加性噪声激励下多稳态系统的动力学行为。一是扫视眼动系统,以图揭示此眼球震颤的动力学机理,为诊断治疗提供参考。二是多稳态van der Pol系统,以探讨循环噪声
稀疏、低秩表示学习是近些年来非常火热的研究课题,具体为稀疏信号恢复、低秩矩阵恢复、低秩张量恢复等问题。这一系列数学问题在模式识别、图像处理、社交网络等众多领域有着非常广泛的应用,目前已经得到了大量的研究。本文拟针对人脸识别和图像处理中出现的数据缺失问题,建立相关的稀疏、低秩表示学习模型,设计有效的算法进行求解,并通过一系列数值实验验证其有效性。具体内容安排如下:(1)针对单样本人脸识别问题,提出了
高超声速飞行器设计涉及两个基本物理量:气动力和气动热,其能否获得与转捩位置能否预测准确相关。对于高马赫数来流,由于激波后气体温度升高、边界层内动能转变为热力学能而导致气体温度升高,气体热物性不再满足量热完全气体的性质,计算时需要考虑高温真实气体效应。转捩位置预测及气动力和气动热计算也需要考虑高温真实气体效应。此外,转捩位置预测还与壁面条件有关,对于长航的高超声速飞行器,等温和绝热壁面条件不再适用,
准确预测层流到湍流的转捩对于高超声速飞行器的设计非常重要。高空飞行中主要的转捩途径是自然转捩,准确预测自然转捩依赖于对边界层中扰动失稳特征全面和深入的认识。在亚声速以及低马赫数(通常小于2.2)的超声速边界层中,流动失稳通常是单一模态失稳,相关的流动稳定性以及转捩问题研究已取得很好的进展。然而,在高超声速流动中(马赫数通常大于4),边界层内存在多个失稳模态,其扰动波的演化过程复杂,稳定性及转捩问题
最近太赫兹成为了国内外研究的热点领域。超表面的出现,为太赫兹功能器件的发展提供了新的方法。目前大部分的超表面功能器件都是基于周期性分布的设计,准周期分布可以为超表面的研究提供了新的思路。本文研究了太赫兹超表面透镜,偏振器件,表面等离激元产生和操控,以及超表面吸收体等功能器件,主要内容如下:1.设计了周期性分布的金属-介质-金属多层金属结构,实现了宽带高太赫兹透过。基于渐变折射率方法,设计了线性,二
超弹性薄壁圆管局部失稳起鼓问题,是一个经典力学问题,也是应变局部化的典型范例,另外,超弹性圆管起鼓的形貌和分叉力学特性与人体动脉瘤高度相似,本博士论文,试图通过实验研究、理论分析,数值计算的方法,系统深入地研究超弹性圆管失稳起鼓演化特性和失稳机理,以及不同材质、结构及加载方式等对失稳的影响,为活体弹性管相关研究奠定基础,希望更进一步探索人体动脉瘤的形成原因。动脉瘤多是由于动脉壁的先天缺陷或后天病变
拉曼激光器是全固态激光器领域的一个重要研究方向,通过将基频光进行特定频移,可以有效拓宽激光频谱范围,为激光通信、激光遥感、生物医疗等诸多应用领域提供合适波段的光源。作为一种高效的三阶非线性光学频率变换技术,受激拉曼散射(SRS)具有区别于其他变频技术的独特性质,如级联特性及拉曼光束自清理特性,使其应用前景更为广阔。因此,本文通过对激光器热效应、谐振腔结构等多种影响SRS转换效率的因素进行优化设计,
MgB2以自身简单的晶体结构、简便的制备工艺、优异的超导性能和超短的感应放射活性衰减时间等优点,在聚变反应堆超导磁体系统中拥有很大的应用前景。但目前采用各种方法制备的MgB2线材都是以自然界中的B单质为原材料。自然界的B单质主要由20%10B和80%11B的同位素组成。由于热中子俘获截面大,在中子辐照环境下10B会发生10B+n→7Li+He(gas)反应,将导致MgB2超导体积分数的部分下降,这
随着“中国制造2025”的提出,数控加工与测量需要更加智能化、自动化,能够避免碰撞事故发生,智能地选择合适的加工或测量路径。本文以三坐标测量机为数控设备平台进行了防碰撞系统的关键技术研究,相关技术可以推广应用到其他类似的数控设备中,不局限于三坐标测量机。传统的三坐标测量机检测需要人工操作进行完成,需要大量的人力成本,而且人工操作检测效率比较低,大量重复单调的工作容易使人因疲劳而操作错误。因此提高数