开孔冷弯薄壁卷边槽钢受弯构件稳定性能研究

来源 :安徽理工大学 | 被引量 : 0次 | 上传用户:bluelink
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在日常工程中,随着人们对冷弯薄壁型钢使用的增加,对其要求也随之提高。在实际施工时,需对结构开设孔洞以方便施工管线的穿插,但开孔一定会影响其屈曲失效模式及力学性能,而现阶段国内外对冷弯薄壁型钢受弯构件的研究主要集中在实腹式截面,对于开孔且加劲的构件的研究则较少。所以本文选取腹板开孔且加劲的此类钢材受弯构件作为研究对象,来分析探究其相关屈曲失效模式及力学性能的影响。本文主要采用有限元数值模拟的方法探究构件的屈曲失效模式以及对其的力学性能展开研究,首先对构件建立有限元模型,模拟得出该构件的屈曲失效模式和极限承载力,通过有限元模拟分析可知:卷边宽度会影响构件的屈曲失效模式;孔洞间距的增加对纯弯构件的极限承载力影响不大,但对于非纯弯构件来说不同的孔径随着孔洞间距的增加,极限承载力会有不一样的变化;开孔会对纯弯构件的承载性能造成一定的影响,并且随着孔径的增加,承载力也随之下降,对于非纯弯构件来说,当构件孔径较小时,它的抗弯承载力同没有开孔构件对比差异性并不突出,一些构件更是存在承载力些微提高的情况,而当孔径进一步增加时,其抗弯承载力出现下降的趋势,并且孔洞的存在会改变冷弯薄壁型钢构件的屈曲失稳模式;随着孔洞率的增大,开孔构件承载力与未开孔构件承载力的比值呈现递减的趋势;同时厚度的增加也会大幅度提高构件的极限承载力。本文在现有研究的计算公式基础上,模拟后经修改提出承载力建议公式;同时把建议公式得到的结果同模拟结果予以对照分析,两者结果基本一致,可知本文的计算公式是可行的。图[33]表[8]参[49]
其他文献
超声冲击技术可以高效消除部件表面或焊缝区有害残余拉应力、引进有益压应力,在改善材料表面应力状态与组织形式等方面具有强大优势。以往研究超声冲击技术,通常采用手持冲击枪进行超声冲击,难以保证超声冲击过程中稳定的预压力和移动速率,不能有效呈现超声冲击强化特性。因此,本文旨在设计超声波冲击精密实验台,并在恒定预压力和移动速率下开展超声冲击纯铜实验。主要研究内容如下:(1)根据实验台的应用背景,设定实验台的
高压输电线路作为电能跨地区、远距离传输的主要载体,运行环境复杂多变,运行过程中容易发生各种故障,严重威胁着电网安全,对社会经济效益造成巨大影响。快速、准确地找到故障点的位置并解决故障确保电网安全稳定运行是电力部门的一大挑战。现阶段电网规模不断发展,T型输电线路在电网建设应用中也变得更加广泛。因此本文研究对于双端系统和T型线路的故障定位问题,利用变分模态分解(VMD)对故障行波进行分解结合Teage
电解加工技术具有可加工任意导电金属材料、无机械切削力、加工效率高等独特优点,成为了难切削金属材料、复杂型腔和型面零件的主要加工手段。然而,电解加工过程中,受到阳极金属材料溶解特性、电场、温度场、流场、脉冲电流等多种因素影响,使其难以获得非常高的工件表面质量和成型精度。为此,本文根据GH4169材料的电化学溶解特性,对该材料的某型叶片电解加工过程的多物理场及三维流场动态模型进行了深入研究,有助于实现
我国是PCB产业制造大国,PCB电路板的质量对企业产品的质量至关重要。开路、短路、划痕、毛刺等各类缺陷是经常出现的几类缺陷,PCB生产出来以后必须进行质量检验,传统多为人工检测、在线检测、功能检测、部分光学或视觉检测等,但是检测效率低,时间长,成本高。随着图像技术与人工智能技术的发展,为实现PCB缺陷的高精度、快速检测,本文提出一种基于深度学习的PCB图像缺陷检测技术,以Faster R-CNN为
聚丙烯(PP)以其优异的机械性能、良好的加工性和耐化学性等特性,广泛应用于建筑建材、汽车内饰、家具电器等领域。然而,PP具有极高的可燃性,并且在燃烧过程中出现熔融滴落现象,存在严重的火灾隐患,这一缺点限制了 PP的应用。针对这一问题,本文提出了两种基于改性竹纤维(BF)制备环境友好型阻燃PP复合材料的方法,具体研究内容如下:采用微胶囊化技术制备三聚氰胺甲醛树脂包裹BF(MFBF),并与微胶囊化聚磷
超级电容器作为目前热门的研究方向,拥有着传统电容器不具备的众多优点。作为一种新型储能设备,它拥有更优异的充放电性能,既继承了传统电容器的优点,又具有电化学充电的机理。聚苯胺(PANI)单独作为电极时存在循环稳定性差、电容低、电导率低等问题。而作为新型碳纳米材料的石墨烯具有稳定的结构特性和较大的比表面积,可以为电解质离子的流动和电子传输提供更大的空间,有利于电学性能的提升。而二氧化锡(SnO2)作为
热塑性聚氨酯(TPU)是一类兼具橡胶和塑料特性的弹性体,具有良好的生物相容性、优异的加工性、耐磨性能良好等而被广泛的应用于医学、包装、内饰等领域。但其机械强度较低,耐热性能较差,在紫外线照射下极易发生自我降解而发黄变脆等缺点限制了 TPU的实际应用范围。纳米材料因其独特的机械性能以及纳米特性常常被用作功能材料来改善TPU的缺陷,因此,设计一种工艺简单、结构独特、功能多样的纳米材料就显得尤为重要。本
随着我国经济的不断发展,煤炭生产量已跻身全球前列,大部分开采装备已实现国产化,其中刮板输送机作为关键设备之一,即承担运输物料功能又是采煤机的行走轨道和液压支架的推移支点,其工作环境恶劣、受力复杂,但具有适应性好、协作性高、对工作周边环境的低要求等特点,刮板输送机的可靠性至关重要。在刮板输送机的日常工作中,随着负载量的不同,启动过程中的带载启动、过载保护、牵引电机功率平衡等问题时有发生,因此研究刮板
低浓度瓦斯是一种高温室性气体,同时也是一种清洁的能源。为响应国家绿色发展战略,在对低浓度瓦斯直接燃烧技术研究的基础上,建立了低浓度瓦斯直接燃烧装置。由于低浓度瓦斯直接燃烧具有独特的工艺要求,因此需要针对其燃烧控制的特点建立与其相适应的低浓度瓦斯直接燃烧控制系统。本文以国内首套低浓度瓦斯直接燃烧装置为控制对象,在分析燃烧装置结构和控制要求的基础上,搭建了低浓度瓦斯直接燃烧控制系统。首先,分析低浓度瓦
亚洲高山区冰川对气候变化响应的敏感性在边缘山区较中腹地区更为敏感,特别是自20世纪全球气候的波动变暖以来,亚洲高山区冰川以更快的速度融化,使得冰川末端出现全面、加速退缩的趋势。由此,冰川表面(主要是末端区域)大部分可能被表碛沉积物覆盖,由于表碛和相邻基岩之间的光谱相似性,山脉和云层所投射的阴影以及季节性积雪,高山地区表碛覆盖等原因,使得亚洲高山区冰川的制图仍然具有挑战性,成为冰川遥感分类领域的热门