QM/MM方法研究含镍槲皮素双加氧酶的催化机理和化学选择性

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:zhangxi0922
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
金属酶在许多生命过程中起着至关重要的作用,它们可以催化许多不同类型的生物反应,具有高效性和高选择性。了解金属酶的催化反应机理可以对酶的改造和利用提供理论指导。近年来,随着量子化学理论方法以及计算机计算速度的飞速发展,量子力学/分子力学(QM/MM)组合方法已经成功地运用在阐述金属酶催化反应机理和选择性。在本论文中,我们采用QM/MM方法研究了细菌中含镍槲皮素双加氧酶的催化反应机理和催化选择性,取得的研究结果如下:首先基于蛋白晶体结构构建酶水溶剂模型,然后再选择合适的活性中心QM区域,其中考虑了与Ni配位的Glu74残基为中性和去质子化两种状态。通过对整个反应势能面的计算确认反应机理和分析化学选择性来源。计算结果表明Glu74必须是去质子化的才可以解释反应的化学选择性,使反应具有合适的总能垒并得到实验上观察到的主产物2-原儿茶酚基间苯三酚羧酸和CO分子。如果Glu74残基是中性的,那么槲皮素的的2,3-裂解将成为主要反应途径,导致副产物α-酮酸的生成。氧气分子与酶结合时形成Ni II-超氧自由基(O2·-)槲皮素自由基复合物,随后的反应通过三个步骤进行:(1)超氧自由基中O2原子进攻槲皮素底物自由基阴离子中的C2形成第一根C-O键,形成Ni II-过氧化物中间体。(2)过氧化物O1原子亲核进攻C4原子形成第二根C-O键,生成过氧化物桥五元环中间体。该步反应过程中存在两种不同的构象变化形成两种不同的异构体,可分别发生2,4-裂解和2,3-裂解。(3)C2-C3,C3-C4,O1-O2键同时裂解,最终生成产物2-原儿茶酚基间苯三酚羧酸并释放CO分子。第三步为整个反应的决速步,计算总能垒为17.4 kcal/mol,这与实验动力学数据非常一致。对于第二根C-O键形成,另一种反应途径是过氧化物O1原子亲核进攻底物中C3原子,形成四元环中间体,然后经过协同的C2-C3和O1-O2键裂解产生副产物α-酮酸。该反应途径的能垒为30.6 kcal/mol,远高于2,4-裂解途径的17.4 kcal/mol。当Glu74为中性时,2,3-裂解途径的能垒为21.8 kcal/mol,而2,4-裂解途径的能垒为24.8kcal/mol,后者的能垒大于前者能垒。因此可以排除Glu74为中性的模型。
其他文献
随着陆地石油以及矿产资源逐渐匮乏,人们开始寻求可再生资源,并且从陆地向海洋领域方向发展。近几十年,海上风电场成为我国海洋可再生资源开发热点之一。在复杂的海洋环境中,
本文以易贡高速远程滑坡为研究原型,进行工程地质模型概化,从颗粒流的角度,采用物理模型试验与离散元数值模拟相结合的研究手段,对高速远程滑坡源区颗粒组构特征与竖向分带进行研究。物理模型试验通过描述堆积体特征,对形成两种典型堆积结构颗粒组构条件进行了分析;数值模拟通过重现物理模型实验结果,分析了在不同堆积结构形成过程中颗粒的运移规律。基于两种方法的综合分析,从宏观和细观的角度初步揭示了滑体粒径组构特征对
癌症是导致死亡人数最多且死亡率最高的疾病之一,严重威胁了人类的健康。尽管癌症研究近年来有了很大的进展,但由于缺乏特异性强的诊断标记物,尤其是早期诊断标记物,癌症诊断仍然是个难题。TCGA和GTEx等数据平台提供了海量的公开数据让研究者可以综合多种组织的数据进行特异表达基因的筛选。本研究的目的是筛选一批高特异性的癌症诊断及预后标记物并对癌症特异高表达基因的转录调控网络和潜在药物靶点进行研究。首先,使
本文主要针对全氧弥散燃烧实验结果进行数据分析,找到影响弥散燃烧涡流运动及结构在炉膛内的分布特点,对燃烧过程进行了数值模拟及分析;首次尝试应用典型涡结构识别方法对弥散燃烧过程涡流运动规律进行分析,发现利用omega方法识别炉膛内涡流运动比其他方法较准确。研究结果为全氧弥散燃烧技术开发和应用提供一定的参考价值。本文先通过数值模拟对平行布置、镜像布置、相向布置的喷嘴进行速度场、浓度场对比分析,发现三种喷
纳米尺度的热输运具有和宏观尺度完全不同的机制,近年来对纳米结构中热的管理和转化已经成为了传热领域的研究热点。为了在纳米尺度调控热输运(声子输运),研究者们从电子学中获得灵感,设计了和电子器件对应的各种声子热器件,包括热二极管、三极管、热存储器等。与可调电阻器相对应的声子热器件是可调热阻器,它可以用来动态调控热导率。本文采用非平衡分子动力学模拟方法,基于弯折石墨烯研究热导率的动态调控。通过连续的拉伸
本文以广元市女皇文化陈列馆山顶危岩为研究对象,通过对危岩体勘查,分析了危岩体的特征、变形破坏模式,提出了相应的防治对策,旨在提出经济合理的防治措施。女皇文化陈列馆山顶危岩带分布标高在526.58560.19m,地形坡度72°83°的岩质边坡地段,呈北东低南西高,南东北西向延伸,沿侏罗系中统沙溪庙组砂岩和泥质砂岩构成的边坡分布,从下至上为巨厚层状钙质胶结砂岩和泥质砂岩,整个危岩带长约151.8m。目
光遗传学是利用光来精准调节细胞生理功能的技术,具有高度的时间和空间特异性。光遗传学技术依赖于两个要素:光和光敏感蛋白,目前已有的光敏感蛋白主要对可见光响应,但是可见光的组织穿透深度较低限制了光遗传学的广泛应用。近红外光(Near infrared,NIR)具有组织穿透深的特性,但是缺乏对NIR响应的光敏感蛋白,使其不能直接应用于光遗传学。应用上转换纳米粒(Upconversion nanopart
催化热解技术是转化效率高的生物质热化学转化技术,可以有选择性地转化生物质形成不同目的产品,如生物燃油、生物基化学品等。本文以降低焦油产率、提高热解气产率以及热解气品质为目标,以松木屑为生物质热解原料,选择铈基化合物CeCl_3和CeO_2为催化剂,分别考察了添加不同比例的CeCl_3和CeO_2对松木屑原位催化热解的影响,与非原位催化对松木屑热解挥发分裂解作用的影响。原位催化热解实验催化剂比例选择
我国的火力发电行业严重依赖于煤、天然气、石油等化石燃料,在不可再生资源日益减少的大环境下,为了减轻温室效应,合理利用不可再生资源,燃煤电厂要尽可能地提高发电机组的热效率,因此超超临界(A-USC)技术的研究是十分必要的。由于超超临界发电机组蒸汽参数的逐渐提高,更加严苛的工况环境要求机组用钢具备更好的耐高温性能、抗热疲劳性能、抗高温氧化性能和抗烟气腐蚀性能等。在高温环境中长期服役后耐热钢的组织稳定性
与常规的污水处理技术和消毒技术相比,电化学水处理技术具高电催化活性和电化学氧化效率,因而在水处理领域具有广阔的应用前景。在本研究中,基于碳纳米管(Carbon nanotube,CNT)膜的优异的导电性和分离性能,通过二氧化钛(TiO_2)改性CNT材料,以期提升其渗透性和抗污染性;利用导电性的还原氧化石墨烯(Reduced graphene oxide,rGO)作为致密光滑且亲水的膜表面,以期提