【摘 要】
:
随着城市化进程的不断加深,城市公共空间内人群的安全管控也愈来愈受到人们的关注。近年来,随着公众安全防护意识的提高,行人流疏散研究已成为当前的研究热点。相比较真人实验,利用行人动力学模型进行仿真研究具有低成本、低风险的优势。本文以微观元胞自动机模型为基础,结合模糊逻辑理论、Logit模型、高斯混合模型建立行人动力学模型,为行人疏散提供有效建议,主要内容概括如下:首先,建立基于模糊逻辑理论的元胞自动机
论文部分内容阅读
随着城市化进程的不断加深,城市公共空间内人群的安全管控也愈来愈受到人们的关注。近年来,随着公众安全防护意识的提高,行人流疏散研究已成为当前的研究热点。相比较真人实验,利用行人动力学模型进行仿真研究具有低成本、低风险的优势。本文以微观元胞自动机模型为基础,结合模糊逻辑理论、Logit模型、高斯混合模型建立行人动力学模型,为行人疏散提供有效建议,主要内容概括如下:首先,建立基于模糊逻辑理论的元胞自动机模型,模拟行人从多出口房间的疏散行为。行人的出口选择行为在疏散过程中起着重要的作用。当行人选择出口时,采用距离和密度作为模糊逻辑的两个输入变量,并将选择每个出口的概率定义为输出变量。结合考虑模糊逻辑的输出变量、出口宽度和从众行为来确定目标出口。Logit模型来解决行人之间的位置冲突。通过比较仿真结果和实际数据,进一步验证了模型的合理性。研究了行人属性、出口属性及障碍物属性对疏散效率的影响,结果表明大型公共建筑物内应控制行人的流量;合理增加出口数量和出口宽度能有效地提高疏散效率;障碍物不宜过长,同时障碍物应与出口保持一定距离以缓解拥堵。其次,建立基于模糊逻辑理论的地铁站台行人分布预测模型,研究站台设施与行人分布的关系。采集站台行人实际流量、速度数据,由距离、密度及候车区面积确定行人的目标车门。通过站台行人分布的仿真结果与实际数据的比较,验证了模型的合理性。研究了行人和扶梯属性对候车行人分布的影响,结果表明增加行人和扶梯数量有助于提高候车行人分布的均衡性;行人结伴行为对站台行人分布的影响不大,但会降低行人的整体平均速度;多个扶梯之间的间距应尽可能相同;在候车行人密度较大的车门前设置指示物或引导员有利于均衡站台上候车行人的分布。最后,建立考虑引导员的行人疏散模型,用于研究引导员对疏散行为的影响。贝叶斯信息准则用于确定引导员的最优数量,EM算法用于确定引导员的最优位置,模糊逻辑理论用于模拟行人对引导员的选择行为,行人及引导员由元胞自动机模型驱动。研究了引导员的数量、速度以及出口宽度对疏散动力学的影响,结果表明引导员在一定程度上可以提高疏散效率,但引导员的数量并非越多越好;一定范围内增加出口宽度可以提高出口的通行能力,有效降低疏散时间;引导员速度为行人速度的75%时,疏散效率最高;行人下车后应尽快出站,减少在站台逗留;行人在疏散过程中必须保持冷静,避免陷入恐慌。
其他文献
自然界中的微生物大多以“微生物群落(菌群)”的形式存在,微生物群落的结构和功能与其共生环境的状态息息相关。宏基因组测序可以获取微生物群落详细的基因组信息和高分辨率的分类学信息。大规模宏基因组样本的beta多样性可以在样本的结构、功能特征与其元数据(如环境状况或健康状态)之间建立联系,精确、全面地计算宏基因组样本之间的距离对于理解宏基因组的beta多样性起着至关重要的作用。然而,目前针对宏基因组样本
机械臂是一种强耦合、高度非线性、多入多出的复杂被控系统,并且存在模型不确定性和外界干扰,对其实现快速准确的轨迹跟踪一直是机械臂领域的难点,也是研究热点。本文在研究串联机械臂运动学和动力学的基础上,考虑到机械臂的模型不确定性以及外界干扰的存在,对基于滑模变结构的机械臂轨迹跟踪控制策略进行研究,主要工作有以下几点:1.以RBT-6T/S03S机械臂为研究对象,用标准D-H参数法对其进行运动学建模,推导
日常捕获的图像通常包含多种不必要的模糊,包括对象运动模糊、相机抖动模糊、场景深度变化等。图像去模糊的目标,旨在从模糊的图像中恢复出清晰的图像,这是一个具有挑战性的计算机低层视觉任务,因为问题本身具有高度的病态性。现有的技术在图像去模糊问题上还存在一定局限性,包括对图像的特征信息提取不充分、速度慢、卷积核的局部依赖性、模糊数据集的采集等问题。近几年深度学习得到了快速的发展,基于卷积神经网络(CNN)
随着移动互联网以及物联网规模和网络应用的不断增加,网络拥塞现象日益显著,网络拥塞已成为制约网络快速发展的重要问题。网络系统本身具有复杂、时变和不确定性等特征,在物理层面对其进行改进不切实际。在面对网络变化时,传统的拥塞控制协议因其固有的规则机制只能做出固定的动作,既未充分利用链路带宽,也未充分利用历史网络数据,并且在发生拥塞时带宽恢复所用时间较长。因此,研究网络拥塞问题对提高网络性能和质量有着深远
掺Yb稀土钙氧硼酸盐晶体Yb:ReCOB(Re=Y,Gd,La)易于由提拉法生长,化学稳定性高,抗光损伤能力强,是一类有着重要应用前景的Yb离子激光材料。这类晶体中的Yb离子基态有着很大的Stark能级分裂,有利于实现室温下的低阈值和高效率的连续波激光运转;而Yb离子上能态的荧光寿命很长,有利于通过调Q获得高能量脉冲激光。除了单一晶体之外,含Lu的Yb:ReCOB类混晶也特别值得探索和研究,因为理
目前人脸识别方法无法精准地完成现实中非约束环境下的人脸识别任务,且在新冠病毒肆虐的情况下,人们外出时均需佩戴口罩,导致人脸被大面积遮挡,所以有效地处理这些问题提高识别效率仍是人脸识别系统中的难点,现今基于深度学习的网络模型已成为检测目标和有遮挡人脸识别问题的研究热点。因此本文主要针对基于深度学习的口罩检测和遮挡人脸识别问题对优化网络模型及分析最优损失函数来提高人脸及口罩识别精度展开研究。主要工作及
社区结构是复杂网络的一个重要特性,社区是节点内部连接紧密,外部连接相对稀疏的一组节点集群。社区检测算法对研究复杂网络的内部规律具有非常重要的价值。本文首先对社区检测算法领域中几种较为经典的社区检测算法进行了分析研究。针对基于种子扩展的重叠社区检测算法存在因种子选取欠佳而导致重叠社区检测结果准确度较低的问题,本文提出了一种新的重叠社区检测算法。首先利用提出的新的种子选取策略生成种子集,然后依据社区度
β-Ca3(PO4)2型化合物的独特晶体结构为稀土离子和过渡金属离子的掺杂提供了可能性,已成为近几年发光材料基质的研究热点。本文针对白光LEDs显色指数较低,全光谱照明所需发光材料亟需等问题,以具有β-Ca3(PO4)2型结构的化合物为发光材料基质,通过设计能量传递模型,利用激活离子的共掺杂策略及化学合成策略,采用高温固相反应、溶胶-凝胶法制备了Eu2+/3+,Mn2+离子激活的发光材料,实现单一
随着我国社会经济的不断进步、城镇化率的提高,许多大中型城市都出现了严重的道路交通拥堵、事故频发等交通问题,不断严重的城市交通问题成为制约城市未来发展的重要因素之一。为了有效解决城市中存在的这些交通问题,同时有效推进智慧城市的建设,本文围绕城市区域的交通流量预测问题,对城市的区域划分与交通流量特征提取展开研究,提出了两种基于深度学习的预测模型。并且为了加快预测模型的训练速度,提高模型的准确率,对深度
近年来,以芯片为控制中心的微电子设备逐渐遍布人们的生活,影响着人们生活中的方方面面。我国作为制造大国,微电子领域的发展起步较慢,与发达国家仍有很大差距。因此,微电子领域成为我国科研工作者的重要研究领域。引线键合作为微电子封装的主要封装工艺,一直占据微电子封装的主导地位,为进一步提高引线键合的键合精度,本文对压电超声换能器的关键组成结构进行了仿真分析,通过仿真分析各组成结构的运动特性来探究其对键合精