论文部分内容阅读
背景近年来,随着我国工业化和城镇化进程的不断加快,建材的需求量越来越大。此外,“节能减排、保护资源”等政策的实施,导致掺渣、多孔的新型建材迅速发展,并广泛应用于房屋建造。然而,由于制造工艺、生产原料等的巨大变化,新型建材的密度、厚度以及氡射气系数也与传统建材产生较大差别,可能导致利用传统的建材致居民辐射剂量模型估算的居民剂量负担产生一定的偏差,不利于有效保护居民健康,也可能阻碍新型建材的科学发展和工业废渣的合理利用。目的研究、分析建材的密度、厚度、类型以及居室内剂量参考点、氡射气系数等参数对估算建材致居民辐射剂量的影响,确定权重大的影响参数并探讨修正方法,统筹考虑内、外照射剂量,建立一种新的建材致居民辐射剂量模型,以更准确评价建材放射性危害。对引入模型中的氡射气系数,研究建立一种快速测量方法,以提高检测效率。研究加气混凝土砌块的氡射气系数随含水率、温度和湿度的变化规律。方法(1)基于Monte Carlo方法,利用MCNPX程序,建立典型的居室结构(4m×5m×2.8m,带门窗),在居室4面墙、底和顶分别填充不同类型、密度和厚度的建材时,模拟计算居民比有效剂量率。利用非线性回归分析,拟合居民比有效剂量率与表面密度的关系函数,从而建立一种新的建材致居民外照射剂量模型,并通过现场测量验证可靠性。通过对建材中氡输运机理进行分析,获得室内氡浓度与建材氡射气系数、密度和厚度的函数关系,建立建材致居民内照射剂量估算模型。(2)通过对氡射气在建材内部和密闭腔体中输运规律的分析,推导氡射气系数快速测量的数学方程。以加气混凝土砌块为研究对象,利用连续测氡仪、密闭腔体和真空封泥等,确定最优化测量时间、分析样品厚度的影响以及该方法的复现性。通过与标准的长时间累积测量法进行比对,验证快速测量方法的可靠性。(3)根据建立的氡射气快速测量方法,测量加气混凝土砌块的氡射气系数在不同含水率(0%、2%、5%、10%、20%、25%、30%、35%、40%、45%、53%和60%)、温度(10、17、20、25、30、35和40℃)和相对湿度(12%、33%、60%、79%和95%)条件下的氡射气系数;并对氡射气系数的测量结果进行回归分析,探讨氡射气系数与含水率、温度和湿度的变化规律。结果(1)建材的类型、室内剂量参考点位置对居民剂量无显著性影响。建材的厚度、密度和氡射气系数对居民辐射剂量影响较为显著,应进行修正。建材中40K、238U系和232Th系放射性核素致居民外照射比有效剂量率随着建材表面密度(密度与厚度的乘积)的增加呈对数型增长。(2)统筹考虑建材致居民内、外照射剂量,引入厚度、密度、氡射气系数,建立了建材致居民辐射剂量模型:式中,E为建材致居民有效剂量率,nSv·h-1;Ck,CRa和CTh分别为建材中40K、238U系和232Th系放射性核素致居民比有效剂量率值,(nSv·h-1).(Bq·kg-1)-1; Ak、AR。和ATh分别为建材中40K、226Ra和232Th的比活度,Bq.kg-1;ε为建材氡射气系数;Ρ为建材密度,kg·m-3;d为建材厚度,m。其中,外照射剂量模型经现场测量验证,具有较好的可靠性。(3)建材氡射气系数的快速测量研究中,24-60h的测量结果较稳定,可作为最优化测量时间。6次重复测量结果的平均值±标准偏差为0.153±0.007,变异系数为4.6%,表明具有较好的重复性。在样品厚度小于氡扩散长度的0.4倍时,不同厚度样品的测量结果没有显著性差异(P>0.05)。氡射气系数的快速测量结果与标准累积测量结果没有显著性差异(P>0.05)。(4)加气混凝土砌块的氡射气系数随着其含水率的增加呈对数型增长:ε=0.096.1n(s+2.43)+0.037(R2=0.952);加气混凝土砌块的氡射气系数随着其含水率的增加呈线性增长:ε=0.00245.T+0.0601(R2=0.987);不同湿度下,加气混凝土的氡射气系数测量结果无显著性差异(P>0.05)。结论本课题通过分析建材厚度、密度和氡射气系数等对建材致居民辐射剂量模型的影响,确定权重大的影响参数并探讨修正方法,统筹考虑居民所受内、外照射剂量,建立一种新的建材致居民辐射剂量模型。所建剂量模型可更合理、准确估算建材致居民辐射剂量,为评价建材放射性危害提供剂量学基础;指导建材安全选用,为制、修订建材放射性危害评价与控制体系提供科学依据;在有效保护居民身体健康的同时,也可促进新型建筑材料的科学发展、工业废渣的合理利用。研究建立建材氡射气系数的快速测量方法,较大缩短测量时间。可提高检测效率、降低检测成本,在促进辐射防护检测技术发展的同时,也是新建剂量模型在实际中推广应用的一种有益补充。