基于视频传感的电梯门机控制系统的研究与设计

来源 :东北大学 | 被引量 : 0次 | 上传用户:f6012000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电梯门控制系统是电梯的重要组成部分,是电梯系统中动作最频繁,也是直接面对乘客的部分,因此在实际应用中需要一个安全可靠、性能稳定、平滑运行的电梯门机控制系统,传统的电梯门保护系统具有一定的盲区及滞后性,使得电梯门的安全性和可靠性有待提高。在此背景下,进行了视频传感电梯门机控制系统的设计。
  论文详细分析与研究了电梯门机控制系统的控制策略,给出了加、减速时电机按S曲线运行的理论计算及其实现方法,为了提高系统性能,增强系统的适应性,将自适应控制应用于电梯门机控制系统中,并对自适应控制理论进行了深入探讨,同时对其可行性和实现方法进行了研究,利用图像处理技术设计了视频传感系统,作为电梯门的保护装置。
  其次,系统的研究完成了软件设计,采用模块化的方式设计了系统的主程序、初始化及复位程序,以中断响应方式实现电梯门的正常开关控制,用加权平均法实现S曲线的信号自适应控制。利用图像的特征进行电梯门处障碍物的判断,检测精度高,且不存在盲区,提供了可靠的电梯保护。本设计搭建了门机控制系统和视频传感系统的实验平台,根据系统技术要求和控制规律,对整个系统的各个模块进行了设计,视频传感部分对采集的图像采用分区处理,结合每个区域采用不同的算法,对运动检测部分建立了自适应背景模型,对背景图像进行实时的更新,提高运动检测的准确性,并设计了监控界面,对电梯的运行状态进行监控,对电梯运行过程中的数据进行记录分析,获取最佳阈值,达到最好的检测效果。
  最后,对整个控制系统进行实验调试,通过示波器观察实验波形,并对实验波形进行分析,验证该控制系统的可行性及实用性。经过调试和实验,设计的控制系统能基本满足电梯门机系统的要求,且运行精度高,可靠性好,响应快,具有很好的实用前景。
其他文献
我国电力系统的发展,尤其是国家以高压为基础的直流电网规划及发展,对开关操作的快速性、可靠性及智能化提出更高要求,传统的操作机构难以满足这些要求。一种新兴的快速斥力机构因结构简单,动作迅速,方便实现电子控制在快速性、可靠性及智能化方面具有明显的优点。但是,目前对快速斥力机构的结构设计和应用还缺乏系统的研究。  文中首先说明本课题研究的意义,随后分别介绍了断路器与电磁斥力机构的特点和国内外发展现状,本
磁场定向控制(Field Oriented Control,FOC)和直接转矩控制(Direct Torque Control Theory,DTC)技术是交流电机高性能变压变频调速技术的研究热点。与磁场定向控制相比,直接转矩控制(Direct Torque Control Theory,DTC)具有结构简单、对电机参数依赖程度更小、转矩与转速响应快等优点。但传统DTC使用两个滞环控制器来控制交流
学位
无刷直流电机(BLDC)使用了电力电子换相电路取代了传统直流电机的电刷与换向器等装置。使其不仅具有启动大、功率因数高、过载能力强以及平滑而广阔的调速性能等优点,而且克服了因电刷换向器装置之间的相互滑动而引起的电火花与机械摩擦等缺点。使其在电动汽车、医用器械、家用设备等范畴得到了普遍的应用。但是由于BLDC位置传感器的存在增添了系统的成本增大了系统的体积以及使系统的稳定性变差,因此极大程度的限制了电
随着永磁材料的飞速发展,永磁同步电机具有的功率密度高,结构简单,效率高、稳定性好等优点更加凸显出来。基于正弦波永磁同步电机这些优秀性能使得其应用范围越来越广泛,先进的性能更加优异的正弦波永磁同步电机的控制方法逐渐成为人们研究的热点。  传统的常见永磁同步电机控制方法包括磁场定向控制和直接转矩控制。直接转矩控制相对于磁场定向控制具有系统结构简单、对电机参数依赖程度小、转矩与转速响应快等优点,但传统直
在现代社会中交流变频这种控制技术在微处理和电子科技的迅猛发展下取得了一定的成绩,然而交流变频这种系统在应用方面却限制在很多的高压的情况下,包括一些抗压和抗受的等级。在一些工业和矿业不断发展对这种带驱动的电机和低谐波的不断增加的要求,各种各样的逆变器电平被研发和使用在很多大功率的领域,如:传送带、提升机、压缩机等等。  在这篇文章中创造性的提出了逆变器NPC/H桥这种五电平,通过运用SVPWM和SP
本文以含有多直流子网的混合微电网系统中的双向变换器为研究对象,针对交流微电网与直流子网1、直流子网2、直流子网3之间的功率动态平衡问题提出了一种不同模式下双向变换器的控制方法。不仅推导了各子网之间有功功率的动态平衡方程,而且设计了基于电流扰动观测器的电流前馈控制器对系统进行扰动补偿,同时还设计了基于伪同步功率控制的交流母线电压故障补偿,使交流母线电压与大电网保持伪同步运行,保证了混合微电网中重要负
随着诸如光伏、风能等清洁可再生能源发电装机规模的日益扩大,新能源分布式发电(distributed generation,DG)技术得到广泛应用。微电网作为承载分布式发电技术的主要载体,可以将各种类清洁可再生能源发电单元以及储能元件有机集成为一个系统,是未来分布式发电技术主要研究方向之一。微电网中三相电压源型逆变器(VSI)常用作微电网中衔接分布式发电单元接口装置,通过对其加以相应的控制方法能够保
和传统的直流电机相对比,无刷直流电机中去除了电刷和换相部件,以电力电子器件来完成电机中的换相功能,电子换相部件通常是指逆变器,常用的是三相全桥逆变器,该三相全桥逆变器能够消除传统直流电机在换相过程中的能量消耗和设备消耗,由于该电机结构简单、输出转矩大、调速范围广、工作效率高、运行可靠、电磁噪声低等诸多优点,故其广泛应用于国民生产、家电、国防、航天以及新能源汽车等领域。但目前应用中大多是在电机上安装
随着以风能、太阳能等可再生能源构成的微电网系统不断发展,电动汽车充电系统在未来发展中会成为微网发展过程中的重要负荷之一,电动汽车的充电装置会给微网带入谐波,影响所接入微网或电网的电能质量。微网属于弱惯性系统,抗干扰能力相对大电网来说非常弱,因此如何保证微网能满足客户要求,高效可靠的运行,这是微电网电能质量研究的主要方向。  本文以微网自身储能及接入的电动汽车储能为研究对象,提出对微网的电能质量进行
学位
伴随着永磁传动技术研究的不断进步,永磁材料的推陈出新,一种全新的节能调速设备-永磁调速器(Adjustable-Speed Permanent Magnetic Coupler,ASPMC)的出现,在现代工业领域中发挥了越来越重要的作用。但是永磁调速器的应用还远没达到成熟阶段,在永磁调速器磁场建模、场量求解和性能计算等理论方面仍处于初级阶段,有很多问题需要进一步研究和完善。为此,本文对永磁调速器磁