论文部分内容阅读
本课题目的是研究一种新型的可生物降解骨移植材料,使材料实现原位成孔,并使材料整体的降解速度慢于材料的成孔速度。首先采用三步法合成了聚富马酸丙二醇酯(poly(propylene fumarate),PPF),并对其进行了表征。制备了CaSO4和β-TCP粉体,探索了CaSO4/β-TCP陶瓷小球的制备和烧成工艺,制取了力学性能较好的CaSO4/β-TCP陶瓷小球。以PPF为基体,N-乙烯吡咯烷酮(N-VP)为交联剂,过氧化苯甲酰(BP)为引发剂,N,N-二甲基对甲苯胺(DMT)作为促进剂,CaSO4/β-TCP陶瓷小球为无机填料,37℃下交联固化,制备了PPF/CaSO4/β-TCP复合材料。交联固化研究发现,不同组成的复合材料交联固化时的最高温度变化不大,从38~43℃,在人体组织的承受范围之内。聚合物分子量以及无机填料CaSO4/β-TCP的含量对交联固化温度的影响最为明显,且聚合物PPF分子量越大CaSO4/β-TCP含量越高,交联固化温度越高。材料的凝胶点在2~13min之间, PPF分子量对凝胶点的影响最大,增大PPF的分子量,会迅速达到凝胶点。增大引发剂的浓度也有同样的效果,但对凝胶点的影响要稍弱一些。降低N-VP/PPF比,增大BP/PPF比率,均会使材料的抗压强度和抗压模量增大。材料的抗压强度在3.94~61.87 MPa,抗压模量在94.24~1149.20 MPa。采用PBS缓冲盐作为降解液,选用长12mm,直径6mm的圆柱状试样,在37℃下研究了PPF/CaSO4/β-TCP复合材料体外降解时的性能。体外降解研究表明复合材料中CaSO4的摩尔分数越大,降解失重越快。交联剂(N-VP)的含量越低,分子量越高,材料的降解速率就越小。N-VP/ PPF和CaSO4/β-TCP越高,材料的抗压强度和抗压模量越低。6周后材料的抗压强度为3.12±1.99MPa~20.56±2.87MPa,抗压模量为57.05±38.34MPa~712.03±284.85MPa。选取性能较好的组成的材料植入日本大耳白兔胫骨,对材料的生物相容性进行了研究。研究发现,材料具有较好的原位成孔性能和良好的生物相容性,可作为小梁骨的替代材料,具有良好的应用前景。