论文部分内容阅读
柔性电子器件在人造皮肤、应变传感器、可穿戴设备等领域具有重大的应用价值。对于柔性电子设备的发展更需要的是提高基底材料的机械性能。值得注意的是,基于天然高分子的柔性基底材料如水凝胶和柔性膜,由于其具有安全性和用之不竭等优良特性,在电子领域受到了广泛的关注。纤维素具有无毒、可生物降解和可再生的特性,是最丰富的天然高分子,并被认为是最适合用来制备环境友好型和生物相容性产品的材料。目前,很多研究专注于提高纤维素的功能特性,但是用纤维素来制备具有高机械性能的柔性基底材料仍是一个挑战。本文立足于提高基于纤维素的柔性基底材料的机械性能,开发了具有高机械性能的离子导电纤维素基水凝胶,并且基于纤维素水凝胶制备了具有高机械性和弱亲水性的透明纤维素膜。此外,本文还探究了它们在柔性电子设备中的应用。纤维素功能化修饰制备烯丙基纤维素,为后续制备新型纤维制品做准备。纤维素在Na OH/尿素水溶液里的均相反应制备了烯丙基纤维素,其中烯丙基缩水甘油醚为改性剂。当烯丙基缩水甘油醚与纤维素上的无水葡萄糖单元摩尔比为5、6、7、8、9时,其取代度分别为0.75,1.05,1.52,1.79,2.23。随着烯丙基缩水甘油醚用量的增多,改性后的纤维素上的O-H伸缩振动吸收峰的强度逐渐减弱,宽度逐渐变小。不同取代度的烯丙基纤维素,它们的晶型结构几乎一样。通过烯丙基纤维素自由基聚合制得了在纯天然高分子(纤维素、壳聚糖和甲壳素)基水凝胶中具有高拉伸性(拉伸应变~126%)和高压缩性(压缩应变~80%)的纤维素离子水凝胶。纤维素离子水凝胶还具有良好的透明性(在550nm下的透过率~89%)和离子导电性(~0.16m S/cm),并且该水凝胶可以在零下20℃的条件下工作,不被冻结并保持透明性。另外,用商业胶带包覆着的纤维素离子水凝胶可以作为可靠和稳定的应变传感器,并且成功地用于检测人体活动。值得注意地,纤维素离子水凝胶的性能可以通过合理调整其化学交联密度来控制。通过过硫酸铵引发烯丙基纤维素自由基聚合的化学交联和氯化钠引发的物理交联制得了具有超拉伸性和抗冻性的双交联纤维素离子水凝胶。在纯多糖基水凝胶中包括纤维素、壳聚糖和甲壳素,双交联纤维素离子水凝胶在室温下具有超拉伸性(拉伸应变~236%)和高的压缩性(压缩应变~82%)。在饱和的氯化钠溶液中的浸泡策略也使双交联纤维素离子水凝胶具有较好的抗冻性。双交联纤维素离子水凝胶在-24℃下具有良好的拉伸性能(应变可达~100%),并且在-30℃~-16℃的低温范围内具有高透明度。另外,双交联纤维素离子水凝胶作为应变传感器,通过对其输出电信号的研究得出该双交联纤维素离子水凝胶具有高可靠性、响应速度快和宽量程应变传感器性质的优点,显示了其在宽温度范围下的在柔性电子器件中的应用潜力。通过烯丙基纤维素与丙烯酸无规共聚制备了具有高拉伸性、应变灵敏性和离子导电性的纤维素基水凝胶。纤维素基水凝胶展现了高的拉伸性(拉伸应变~142%)和透明性(在550nm处的透明度~86%)。在较宽的拉伸应变范围内(0-100%),纤维素基水凝胶的电阻变化率随拉伸应变表现出高的线性关系和应变系数。另外,纤维素基水凝胶作为应变传感器展现了良好的电信号重复性和稳定性,即使循环了1000次。基于该纤维素基水凝胶的可穿戴传感器被成功构建并用于监测人体的驱体活动。基于纤维素水凝胶制备高机械性和弱亲水性的透明纤维素膜。纤维素膜不仅展现了高的拉伸应变(34%)和良好的机械稳定性,还在宽的波长范围(520nm到800nm)内具有高的透明度(高于90%)。另外,通过烯丙基缩水甘油醚取代纤维素链上的亲水羟基赋予纤维素双键的同时还降低了纤维素膜的亲水性。纤维素膜的初始水接触角~79°,在去离子水中浸泡2天后仍具有3.5MPa的拉伸应力。通过化学反应制备的纤维素膜具有可降解性。在30℃下,纤维素膜在天然农田土中的降解半衰期为20天。纤维素膜也有良好的热稳定性(开始热分解温度~200℃)。值得注意地,高机械性和弱亲水性的透明纤维素膜可成功地用于构建柔性电致发光器件。