论文部分内容阅读
贵金属纳米颗粒,特别是金银纳米颗粒,由于局域的表面等离子共振效应而表现出独特的光学性质,在材料科学的诸多领域得到广泛应用。金属纳米颗粒的表面等离子共振是在入射光的激发下金属表面价带自由电子集体振荡的结果,当入射光频率与自由电子振荡频率相同时,会表现出强烈的等离子共振吸收。等离子共振能增强金属表面附近的局域电场,从而可以改变金属纳米颗粒附近发色团的激发和发射效率,调控其光学性质。表面增强拉曼散射,金属增强荧光和金属增强非线性光学等技术都是基于上述原理实现的。目前金属增强荧光的研究大多数只关注于单光子荧光的增强与应用,对于金属增强双光子的研究报道较少。多光子荧光强度被认为会产生更显著的金属增强荧光效应,因为其荧光发射强度与局域电场的高阶函数成正比。金属增强双光子荧光在金属基质表面已经得到证明,但在溶液体系中的研究报道非常少见,并且相关文献中的实验方案为了实现最优的增强效果,需要通过位阻层来调节发色团与金属纳米颗粒表面的距离,合成修饰过程比较复杂。最近,研究学者发现在溶液中利用聚集的金属纳米颗粒可以增强修饰在其表面的发色团的荧光,这是因为聚集的金属纳米颗粒等离子共振耦合,在间隙处的电场显著增强,极大的提高了发色团的激发和发射效率,增强其荧光。基于此,本文希望利用在液相中聚集的纳米颗粒来增强染料的单双光子荧光,以期在生物成像、生物检测等领域的应用。在第二章中,本文首次利用聚集的银纳米颗粒同时增强了染料的单双光子荧光,同时制备了不同尺寸的银纳米颗粒(20 nm、36 nm、48 nm)系统的研究了颗粒尺寸对等离子耦合增强染料单双光子荧光效果的影响。由于在单分散时,染料与金属纳米颗粒表面直接接触,其单双光子荧光会被金属纳米颗粒显著淬灭,但在加入连接剂引发聚集后,纳米颗粒表面等离子耦合,间隙处局域电场显著增强,提高了附近染料的激发和发射效率,不仅可以恢复被淬灭的单双光子荧光,而且可以进一步的增强。研究结果表明,更大的银纳米颗粒有更大的增强效果,48 nm银纳米颗粒聚集增强的单双光子荧光相较于淬灭的单光子荧光增强了4.2倍,双光子荧光增强了18.9倍,相较于原始染料单光子荧光增强2.5倍,双光子荧光增强10.2倍。高的双光子荧光增强倍数可以带来更高的检测灵敏度,显著的单双光子荧光增强归功于等离子耦合增强的激发和发射效率。在第三章中,研究了不同发射波长的染料对银纳米颗粒聚集增强荧光的影响。选择了蓝光PFP和橙黄光PPV两种水溶性的阳离子发光聚合物作为研究对象,根据第二章中的实验原理,引发银纳米颗粒聚集增强聚合物的单双光子荧光。阳离子发光聚合物不仅可以作为染料分子,而且可以充当连接剂通过静电吸附引发银纳米颗粒聚集,因为纳米颗粒表面带负电,这更进一步的简化实验过程。实验发现,通过聚集银纳米颗粒可以极大的增强橙黄光共轭高分子的单双光子荧光,在最优的实验条件下,相比于同浓度的高分子荧光,共轭高分子的单光子荧光可以增强8.16倍,双光子荧光可以增强14倍;而对于蓝光聚合物而言,其双光子荧光不仅没实现增强反而被强烈淬灭,说明聚集银纳米颗粒增强染料荧光有波长依赖性。本工作对利用等离子耦合增强荧光的染料分子选择有一定的指导作用。本文首次利用简单的银纳米颗粒聚集同时增强了有机小分子和共轭高分子的单双光子荧光,证明了等离子耦合增强光学性质的可行性,提供了一种有效的增强染料荧光的实验方法,在荧光成像技术与生物检测等领域有巨大的应用前景。