原子核核子密度、动量分布的微观理论研究

来源 :中国科学院大学(中国科学院近代物理研究所) | 被引量 : 0次 | 上传用户:qq121450500
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文结合原子核结构的传统研究方法和目前火热的深度学习理论系统的研究了原子核的密度分布。在此过程中,使用了描述有限核的基于密度泛函理论的Skyrme-Hartree-Fock(SHF)+BCS模型计算目标核子密度分布,用以训练深度神经网络。在机器学习的过程中存在一个转折点,该点展现了从类Fermi分布到现实的Skyrme分布的过渡。最终结果表明,只用约10%的核素(300-400)足以描述整个实验发现的核素图区的核子密度分布,中心的平均绝对误差相对于饱和密度而言不到2%。对比Bogoliubov提出的处理对关联的方法和不同的Skyrme核力,神经网络得到了相似的结论,这说明这种方法具有普遍性、不依赖于特定的物理模型。针对于动量分布,同样使用了SHF模型所求得的坐标空间波函数,利用基矢的汉克儿变换(魏格纳变换),获取各个壳层的动量空间波函数,进而求得动量分布。此外,本文还研究了核物质的动量分布,使用了基于谱函数方法的Brueckner-Hartree-Fock(BHF)模型,计算了不同不对称度和密度下的动量分布,并研究了该种方法下动量分布的标度性,最后给出了统一描述密度和不对称度依赖的动量分布形式。本文除了对核结构方法下获得密度和动量分布进行了研究,还利用基于同位旋相关的Boltzmann-Uehling-Uhlenbeck(IBUU)输运模型考察了相关核结构效应对重离子碰撞产生的探针带来的影响。这些结构效应从两个方面开展:一方面,采用不同的模型框架——SHF和Shell-Model产生了 S和C1同位素链的密度分布。对于壳模型而言,核芯通常被冻结,因此通过壳模型的价核子分布加上16O的密度分布来和平均场模型对比。理论和实验对价核子的谐振子基矢长度有不同的要求,bHO=2.5 fm和bHO=2.0 fm。对于理论情况,碰撞后π介子产量有明显的区别;而对于实验而言,双π-/π+比值有明显的差异。这项研究体现了混合组态带来的碰撞效应。另一方面,每核子入射能量为400 MeV的197Au+197Au反应中,研究了碰撞核中核子动量分布的高动量尾巴(HMTs)差异对一些同位旋敏感观测量的影响。研究发现,核子横向流和椭圆流、低动量处的自由中质比对HMT的具体形式都不太敏感,而高动量处的自由中质比、π-、π+的产量以及库仑峰附近的π-/π+对HMT的具体形式很敏感。事实上,这项研究结合试验对核物质或者重核的短程关联具有深远的意义。
其他文献
结构件在使用过程中由于受各种外部载荷和长时间服役环境的影响,不可避免的出现局部损伤,结构件受损会使结构的强度降低并影响整体性能。为了恢复及增强结构件的力学性能和服役寿命,对受损结构件进行修复和补强十分必要。碳纤维复合材料(CFRP)力学性能较好,可设计性较强、抗疲劳性能较好、耐腐蚀性能较强、便于整体成形,所以适用于修复和补强金属结构件。因此,本文研究了修复方式、修复长度、中心裂纹方向和服役温度等因
多孔超材料通过微结构设计可实现传统材料无法实现的特殊性能或功能,具有重要的工程应用价值。其中具有热膨胀系数和泊松比可同时调控特性的多孔超材料是当前多孔超材料多功能集成化的重要发展方向。但是,在目前文献报道的大多数多孔超材料仅具有单独的泊松比调控或者单独的热膨胀系数调控特性,无法满足工程中对温度和力场同时激励下的变形控制需求。因此,本文基于晶体学多重旋转对称原理,设计分析了六种可实现多方向的泊松比和
物质生活日益丰富,人们对于食品品质的追求也逐渐提高,尤其是对果蔬新鲜度以及质量的需求。为提高果蔬在冷藏运输中的品质,本研究提出了一种改进的内部结构以改善冷藏车厢的保鲜性能。首先,建立了三维计算流体动力学模型,并采用多孔介质理论对货堆进行简化,多孔介质的阻力特征则是通过理论与数值模拟相结合的方法获取并用文献数据验证。其次,添加了三个挡板阻挡车厢内的间隙,减少冷气流的损失,从而改善温度分布的均匀性。最
软磁性磁环是一种广泛应用于现代通信、自动控制、汽车电子、航空航天等领域的磁性材料。磁环在生产过程中容易受到多种损伤。目前,磁环的缺陷检测主要依赖人工,不仅效率低,而且成本高。因此,本文研究了基于机器视觉技术的尺寸测量和缺陷检测算法,并研发出一套针对软磁磁环的缺陷在线检测设备——光检机。主要从以下几个方面展开研究。从视觉成像原理出发,对成像系统的硬件进行了选型。制定出各个检测工位的打光方案,搭建了光
角接触球轴承有着成本低、结构简单、径向刚度性能好等优点,是高速、超高速电主轴使用最为广泛的支承方式之一,其预紧力的施加是影响主轴加工性能的重要因素。合适的轴承预紧力可以减小游隙,减缓振动,提高加工精度和效率,但在电主轴加工过程中,随着转速和主轴外载荷的变化,主轴-轴承系统对于预紧力的需求并不相同,为尽量提升加工效果,不同主轴转速需要不同的轴承预紧力与之匹配。但是现有对电主轴可控预紧技术的研究尚未完
建筑施工、车辆行驶鸣笛及广场舞等生产生活噪声,容易使人产生烦躁焦虑等负面情绪,严重影响现代人的休息睡眠。噪声轻则造成第二天的工作状态受到影响,重则会造成心脑血管和神经衰弱问题,对于生产生活的有序进行产生了巨大的负面作用。噪音控制能够分为被动噪声控制和主动噪声控制两种。但是被动降噪技术只对高频噪声控制有明显效果,存在对控制低频噪声控制不好的缺陷。噪声主动控制正好弥补其缺点,因此噪声主动控制的研究及其
随着信息技术的发展和智能手机的普及,驾驶员驾驶过程中使用手机已成为诱发交通事故的原因之一。因此,研究驾驶员执行次任务对驾驶安全的影响十分必要。本文针对驾驶员因执行次任务导致分心现象开展研究,主要完成了以下几个方面的工作:(1)基于SHRP2自然驾驶数据分别建立了驾驶员人口统计学特征与次任务风险关联子数据库以及次任务分心与内在特征关联子数据库。将次任务分为5大类,即手机使用、视觉需求任务(非手机相关
随着社会的发展,人民的生活水平日益提高,汽车的保有量也不断增长,车辆的智能化引起广泛的关注。智能车辆的提出不仅以减轻交通拥堵、减少交通事故为目标,还具有提高道路资源利用率的重要意义。其中,环境感知技术是车辆智能化过程中至关重要的一环,让车辆具有人类一样的观察和思考能力是研究者们不断努力的方向。本文以基于视觉技术的智能车辆环境感知为研究对象,对车辆检测和道路检测问题展开深入的研究。人类的视觉系统是一
随着汽车保有量的日益增长,道路交通事故也越来越多。其中因驾驶员无法及时有效地进行决策而造成的事故占多数。智能汽车决策技术能显著减少因人为决策不及时而引发的事故,从而提高道路安全。因此,开展智能车辆决策技术研究具有十分重要的意义。本文针对传统的端到端决策网络模型特征提取能力弱、收敛慢等问题,研究了以车载前视摄像头采集的行车图像为输入,以车辆方向盘转角、车速为输出的改进智能车辆端到端决策技术。主要研究
高超声速飞行器飞行时,其机体表面会受到严重的气动热载荷作用,导致机体温度快速上升甚至有烧蚀机体的风险。而热防护系统作为高超声速飞行器的重要组成部分,其主要作用是保护飞行器内部元器件在安全温度下工作并保证飞行器的外形不发生显著变化,所以它对飞行器的整体性能有重要影响。集成式热防护系统由于兼具隔热和力学承载功能,是热防护系统的重要发展方向。而采用轻质多孔夹芯结构的集成式热防护系统具有轻质、优异的机械性