Dielectronic Recombination of Li-like Ca17+ and F-like Fe17+ Ions at Heavy Ion Storage Ring CSRm

来源 :中国科学院大学(中国科学院近代物理研究所) | 被引量 : 0次 | 上传用户:huanyingchangmaoshou
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
配备电子冷却器的重离子冷却存储环为电子离子复合精密谱学实验提供了绝佳的实验平台,其具有高真空低本底、高精度、大范围能量调制、直接获得绝对复合速率系数等优点。本文基于兰州重离子冷却储存环HIRFL-CSRm开展了类锂Ca17+和类氟Fe17+离子的双电子复合(DR)精密谱学实验,此外,还开展了几种高电荷态离子的辐射复合(RR)增强效应的研究,主要结果包括以下两个部分:第一部分是类锂Ca17+与类氟Fe17+离子的双电子复合精密谱学实验研究。我们在重离子储存环CSRm上成功获得了类锂40Ca17+与类氟Fe17+离子的DR谱。Ca17+离子对应的电子-离子质心系相对能量的调制范围为0-42 eV,包含了2s电子的所有?n=0的DR共振(2s1/2→2p1/2 nl and 2s1/2→2p3/2 nl),并且确定了2S1/2→2P1/2和2S1/2→2P3/2的跃迁能分别为35.95±0.35 eV和41.05±0.06 eV。Fe17+离子DR实验对应的电子-离子质心系相对能量范围为0-6 eV,观测到2p5[2P3/2]nl线系对应的多个DR共振。为了进一步认识和理解实验观测到的DR谱,我们使用FAC程序对这两种高电荷态离子的DR截面进行了理论计算,并与电子束能量分布进行卷积获得DR速率系数。通过理论计算和实验结果的对比发现,在相对能量较高的部分实验和理论计算结果符合的很好,然而,实验与理论在低能部分却存在明显的差异,这也表明理论模型对于低能DR截面的计算有待进一步改进和优化。最终通过DR实验速率系数卷积麦克斯韦-玻尔兹曼分布得到了专门用于天体物理的等离子体速率系数,并且与不同的理论数据进行了对比,澄清了不同理论模型的适用范围,我们的实验结果结合理论计算提供了可靠的用于天体物理等离子体模型的关键数据。论文的第二部分研究了类锂Ar15+,类铍Ar14+、Ca16+和类氟Ni19+离子的RR增强效应。为了更好地解释低能段的电子-离子复合速率系数谱,我们开展了一系列的RR和DR过程的理论计算,并与实验进行了细致的比较。其中,使用修正的半经典Bethe和Salpeter公式计算了各种离子对应的RR过程,并分别使用AUTOSTRUCTURE和FAC代码计算了各种离子的DR截面。我们通过拟合解谱实验数据,分离出了RR和DR过程对于总的复合速率系数各自的贡献。理论和实验结果的对比表明,在10 meV以下实验结果均大于理论计算和拟合结果,在小于1 meV以下,实验结果比理论上计算结果和拟合结果高出1.5至3.9倍。此外,发现RR速率系数增强对离子的电荷态和电子束温度呈现出强烈的依赖性。CSRm上的实验结果证实了之前其他储存环电子-离子复合实验中的RR增强效应,并且给出了具体的分析和结论。
其他文献
航空发动机是集复杂化与精密化为一体的热力机械件。在发动机工作状态下,机匣受惯性力和外界气压影响,以及温差变化所产生的热载荷影响,是整个发动机装置的关键承载零部件。大尺寸轻合金环状壳体机匣件,加工繁杂,材料去除量大,周期长,加工过程所产生的切削热以及环境温度的变化,将导致生产的零件精度不达标。本文将机匣抽象为圆环件,对圆环件自身受热产生变形方面进行深入研究,通过理论、仿真和试验方法探究其热变形的变化
随着交通事故频发,政府制定的汽车安全性法规日趋严格,汽车碰撞安全已成为社会的热点关注问题。其中,耐撞性是评价汽车碰撞安全的重要指标。S形前纵梁作为一种典型的吸能梁结构,发生正面碰撞时,能吸收大部分碰撞能量,其变形形式直接影响汽车正面安全性能。因此,对S形前纵梁进行耐撞性优化设计,可以进一步提高汽车的碰撞安全性。S形前纵梁在碰撞过程中,受到轴向压力和弯矩的共同作用,变形形式复杂。同时,由于车身结构的
电动汽车作为能源危机背景下汽车转型的重要方向,经历了十几年的发展历程,各项技术都得到了很大突破,但是还有许多问题亟待解决;电动汽车上普遍使用锂电池作为动力电池,并且配备电池管理系统(BMS),目前车载BMS硬件计算资源和能力有限,数据存储能力有限,无法应用更高精度更加复杂的荷电状态(SOC)估算算法;随着移动无线通信技术(如4G、5G)的发展,数据传输延迟得到了很大的降低,传输容量增大,已经满足远
自动导引小车(Automated Guided Vehicle)作为移动机器人的一个重要分支,因其高效、智能等特点在工业领域得到广泛应用。定位导航是AGV的关键技术之一。即时定位与地图构建(Simultaneous Localization and Mapping,SLAM)技术是指机器人在移动过程中同时实现自身定位和增量地图创建,是目前AGV定位导航的主流方法。课题围绕激光SLAM开展研究工作,
闭孔泡沫铝作为一种多功能材料,具有高比强度、高比刚度,吸收能量能力强等优点,被广泛应用于军事、航空航天、高铁、船舶、汽车等领域。它作为汽车关键部件的填充材料,具有良好的安全防护特性和优异的轻量化效果,受到了科研人员的重视。为了更好地分析闭孔泡沫铝的力学性能和变形机理,本文围绕闭孔泡沫铝的三维模型建立方法、胞壁材料力学性能参数的反求、以及单轴压缩和压剪工况下的数值仿真分析展开了一系列研究工作:(1)
泊松比是表征材料变形量的重要参数,但是常规材料的泊松比值仅在[-1,0.5]之间。突破传统材料的泊松比范围限制,开发具有泊松比调控特性的超材料,对于航空航天、汽车、医疗、能源等领域具有重要意义。三角形和蜂窝点阵结构具有进行平面超材料结构设计的诸多优点,如完备的理论基础、结构简单且易于制备。但目前制备的这类超材料的泊松比范围仅在[-4,1]之间,其泊松比调控能力未充分被发掘。此外,工程中常用的曲面圆
p53作为重要的肿瘤抑制因子,几乎在所有的人类肿瘤中都出现功能缺失。目前已有许多p53的激活剂被开发成肿瘤治疗药物,但是由于激活p53对正常组织带来的安全问题限制了其治疗效果。MDM2和MDMX是p53关键的两个负调控蛋白,MDM2与MDMX形成异源二聚体负责p53最核心的调控机制。对于生理状态下MDM2/MDMX异二聚体在成体中对p53的调控作用鲜有研究。肿瘤细胞与周围的基质组织和浸润的免疫细胞
核能是一种安全、可大规模利用的清洁能源,发展核能对于维护国家主权、保护生态环境和促进科技进步等方面具有十分重要的作用。得益于铅铋合金(Lead-Bismuth Eutectic,LBE)传热性能好、沸点高和化学活性低等优点,铅冷快堆(Lead-cooled Fast Reactor,LFR)被遴选为第四代反应堆系统之一和加速器驱动嬗变研究装置(China initiative Accelerato
极紫外光的单光子能量足以电离大部分原子分子的外层价电子,在原子分子光物理基础研究中具有重要的应用价值。目前最主要的极紫外光源,是同步辐射和自由电子激光这样的大科学装置,建造及运营维护成本极高。而超快强激光场中的高次谐波过程,可以在桌面化尺度,产生高度相干且脉冲时间超短的极紫外光,是近些年极紫外光源发展的重要趋势。本论文工作基于高次谐波的单色化,搭建了一套桌面化超快极紫外光源系统;并结合先进的反应显
前列腺癌是全球男性第二大常见癌症。在中国,国家癌症中心发布的最新全国癌症统计报告明确指出,男性前列腺癌近年来的上升趋势明显,已位居男性发病第六位,在未来的肿瘤防控中应该重点关注。放疗具有疗效好、适应症广且并发症少等特点,是一种最常见的、疗效明确的前列腺癌治疗方法。然而,大约有三分之一的前列腺癌患者最终会出现放疗后复发。因此,如何提高前列腺癌的放射治疗效果,有效杀伤肿瘤细胞,仍然是目前临床医生和科研