天然产物Thalassosamide的合成研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:a5823869
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近些年来,由于抗生素的广泛使用,尤其是抗生素的滥用,导致细菌耐药性的快速产生。多重耐药菌,尤其是超级细菌的出现,对人类的健康以及安全造成了严重的威胁。而铁载体类抗生素,则是一类新兴的治疗细菌感染的有效化合物。Thalassosamide是从海洋细菌Thalassospira profundimaris中分离出的具有大环异羟肟酸结构的天然铁载体化合物。研究发现,Thalassosamide能有效地抑制铜绿假单胞菌(最低抑菌浓度为64μmol/L)。近些年,通过模拟天然的铁载体抗生素利用细菌对其独特的高效转运系统将药物和铁载体以适当的方式偶联,进行新型抗菌药物的开发已经成为了一大研究热点。有许多铁载体-抗生素的偶合物正在被研究开发。然而,当前尚没有对以Thalassosamide为代表的三聚体环型铁载体化合物的合成以及相关结构修饰的研究报导。因此,对于天然产物Thalassosamide的合成研究具有重大意义:第一,可以拓展Thalassosamide的来源,为大量获得该天然产物提供便利;第二,可以通过药物化学结构改造的方法,进一步探索Thalassosamide的三聚体结构进行修饰,以期望得到活性更好的化合物。第三,可以进一步对以Thalassosamide作为铁载体与抗生素进行偶联从而进行抗菌活性研究。本论文工作以D-赖氨酸盐酸盐和(S)-3-羟基丁酸甲酯为起点原料,为天然产物Thalassosamide的合成探索了3条路线,并通过11步完成了Thalassosamide单体片段的合成。在合成的过程中,采用了引入保护基,BPO氧化,酯水解和缩合等有机合成反应,在筛选反应条件的过程中,克服了产率低、选择性不高、消旋等困难,为Thalassosamide的全合成奠定了前期的研究基础。
其他文献
随着移动终端设备和移动互联网的飞速发展,越来越多的网络活动正在转移至移动环境,而移动互联网安全性却面临更多严峻的技术挑战。例如无线通信信息更容易截获、篡改等。因此,对移动环境的安全性提出了更高的要求。准确的个人身份识别认证是网络空间安全(包括移动环境)的重要核心和基石。然而,数字密码、九宫格图案等传统移动环境身份认证方式已经逐渐难以完全满足安全要求。生物特征作为一种具有更高唯一性、安全性和稳定性的
在国家吹响建设科技强国号角的背景下,高职院校在建设科技强国战略中应体现应有的责任和担当。坚持立德树人根本任务,培育"德技并修"的高素质技术技能型人才,是高职院校的重大使命。校企合作是培育高素质技术技能人才的有效途径,虽经过多年的探索,高职院校校企合作育人模式趋于合理化、多元化,但是目前我国高职院校学校育人和企业育人存在一定的脱节,培养的人才和企业还有一定的差距。因此文章从高职校企文化的育人共性出发
期刊
PD-L1抗体和免疫佐剂CpG的作用位点,分别位于肿瘤细胞表面和树突状细胞内,已有的肿瘤免疫联合治疗,缺乏针对药物作用位点明确的选择性,影响联合应用药效的发挥。实现针对药物免疫治疗不同作用位点的序贯靶向及靶向基础上的药物释放,是一个亟待解决的问题。本研究选用生物可降解阳离子材料壳寡糖(Chitosan oligosaccharide,CSO)为基本骨架,嫁接硬脂酸(Stearic acid,SA)
研究报道,基因突变致mTOR信号通路过度活化所引起的一些综合征中往往伴随着难治性癫痫的发生,这类癫痫称为mTOR相关性癫痫。mTOR信号通路激活状态的高低反映癫痫发作的严重程度和抗癫痫药物的疗效。当mTOR上游信号如PI3K、蛋白激酶B(Akt)激活时,mTOR及其下游分子核糖体S6K蛋白激酶(p70S6K)被激活,活化的S6K进一步磷酸化S6并产生一系列生化效应。mTOR信号通路下游核糖体蛋白S
校园文化作为社会文化的内容,它具有时代性和个性特征。校园文化作为高校思想政治教育的重要载体,既能够满足广大师生的精神文化需求,也能够为学校的教育教学、人才培养提供强大的精神动力。高校要结合学校及学生特点,不断丰富校园文化建设内涵,明确文化定位,做好整体规划,构建多维文化育人体系,彰显文化育人效果。
本文以铅锌尾矿为研究对象,在掺入少量化学药剂的情况下,将其制备成高附加值的微晶玻璃,并研究了基础玻璃钙硅比对其析晶情况及微晶玻璃性能的影响,确定了铅锌尾矿制备微晶玻璃的最佳基础玻璃钙硅比。在此基础上,通过系列分析手段进一步探究了晶化温度、晶化时间以及升温速率三个因素对微晶玻璃晶相结构、产品物理性能和耐化学腐蚀性的影响,并探讨了微晶玻璃对重金属的无害化/稳定化效果。其主要研究结论如下:(1)通过调控
太阳能作为清洁且可再生的能源之一未来很有可能是代替传统化石燃料的首要选择,太阳能热利用技术应运而生。聚光太阳能发电技术近年来得到迅速发展,是太阳能大规模热利用技术的重要发展方向。聚光太阳能发电系统的关键部件之一的吸热器,决定着整个系统的热电转换效率。20世纪80年代,美国Sandia国家实验室提出了一种颗粒吸热器,该种颗粒吸热器对吸热器的热性能有了很大的提高,在吸热器内颗粒可以被加热到1000K,
为应对化石能源枯竭带来的能源问题,以风能发电和光伏发电为主的新能源发电形式现如今越来越多地被并入电力网络中,然而新能源发电具有波动性与间歇性,大规模接入新能源发电将会极大降低电力系统的稳定性,增加事故风险的几率。传统发电机组的一二次调频手段越来越无法保证新能源高渗透率下电网频率的稳定。电池储能系统由于其具有快速响应的能力以及技术的日渐成熟,可以提供比常规调频手段更加快速可靠的调频服务,因而成为提供
目的:设计一种口服递送系统用以包载GLP-1类药物艾塞那肽,实现有效提高艾塞那肽口服吸收生物利用度,以期降低2型糖尿病大鼠血糖,并缓解胰岛素抵抗。方法:以大豆磷脂S100为两亲性材料,包载艾塞那肽溶于中链油中形成反相胶束(Reverse micelle,RM),加入吐温80/乙醇作为表面活性剂,得到艾塞那肽-反相胶束-自微乳纳米制剂(Reverse micelle/Self Emulsifying
起落架外筒是飞机起飞降落时的主要承力构件,对飞机的安全飞行起着至关重要的作用,一般是由模锻件加工而成。随着我国800MN液压机的投产,世界各国的大型飞机起落架外筒生产加工开始向中国转移。起落架外筒材料一般选用超高强度钢,这类材料锻造温度高,对模具的热效应较大,锻模常常因为局部结构过热软化、蠕变失效,给企业带来巨大损失。起落架类锻件结构复杂,枝丫结构较多,因此需要设计多工序模锻工艺,中间坯料设计合理