超临界压力CO2通道内流动换热特性研究

来源 :中国科学院大学(中国科学院工程热物理研究所) | 被引量 : 0次 | 上传用户:xypcs
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
国民经济的迅猛增长使得能源需求日益加大,使用清洁能源和提高能源利用效率是未来能源系统的重要发展方向。超临界CO2系统结构紧凑、效率高,在未来能源系统中应用前景广泛。作为系统中的重要组成部分,换热设备的性能对整个系统的效率有着重要影响。然而,超临界CO2在临界点附近剧烈变化的物性以及一些新型紧凑式换热器复杂的通道结构,给换热设备的优化设计带来巨大挑战。因此,阐明超临界CO2在不同通道内的复杂流动换热机理对于指导换热器优化设计具有重要意义。本文基于数值模拟和实验测试,对超临界压力CO2(sCO2)在通道内的流动换热性能进行详细分析,并针对不同通道结构进行了优化设计。首先建立单直通道模型,设置壁面受均匀热流,探究sCO2流动换热机理。在单直通道内,为获得较高对流换热系数,同时流动阻力和熵产较小,通道内热通量与质量通量的比值应相对较小,工作压力也应相对较小。相同水力直径的圆管、半圆管和方管中,圆管内整体对流换热系数最大,方管内流动阻力系数最小。理论分析和数值结果均表明,sCO2在黏性底层和过渡层内的有效热导率对管内局部对流换热系数的大小起着决定性作用。考虑到太阳能集热器、燃煤锅炉水冷壁等换热设备中周向热流明显不均的情况,通道内sCO2的换热性能更为复杂。建立有固壁的圆管模型,研究非均匀热流条件对管内流动换热性能的影响。大部分情况下,周向热流越不均,sCO2的流动换热性能越差。非均匀热流条件时,加热半周越接近通道底部,sCO2换热性能越好。为缓解非均匀热流导致的传热恶化,提出了四个局部强化的管道。强化管道内,sCO2的综合性能可提升23%左右,同时管道内壁的热流和温度不均匀度也明显降低。分布协同理论可以很好地解释非均匀热流导致的管内换热不均匀性。印刷电路板式换热器(PCHE)通道结构复杂且通道布置方式多样,仅基于单个圆管中sCO2的流动换热规律,并不能满足其优化设计要求。因此,建立更接近实际流动换热过程的耦合模型,探究PCHE内的sCO2的流动换热特性。基于半圆直通道耦合模型的研究,首次提出使用二次流数与雷诺数的比值(Se/Re)对水平通道内变物性导致的浮升力效应进行判别:当Se/Re>0.1时,浮升力效应的影响不可忽略。与传统浮升力判别式相比,新判别式对水平通道内整体和局部的换热强化都有更好的预测。较低雷诺数条件下,直通道PCHE内轴向导热的影响不可忽略,已有轴向导热判别数并不能对PCHE内局部轴向导热的影响进行准确的判断。与直通道相比,之字形通道可以有效强化换热,但同时流动阻力也明显增大。同时考虑热力学第一定律和第二定律评价指标,之字形通道的拐角在110°至130。之间时,sCO2在PCHE内可获得最优的综合性能。场协同原理可对不同之字形拐角通道内的流动换热性能进行很好的解释。之字形通道拐角附近的回流可有效增强局部速度和温度梯度的协同,且减小局部熵产。通道拐角相对较小时,通道内二次流强度更大,整体速度场和温度梯度场的协同更好。最后,基于课题组全温全压超临界CO2实验平台,对新翼型肋PCHE在不同质量流量、工作压力和入口温度条件下的换热和压降特性进行了测试。新翼型肋PCHE换热量最高可达100 kW,相同进出口条件下,新翼型肋PCHE的换热量与之字形通道PCHE相当,而压降仅为之字形通道PCHE的1/6左右。进一步的数值模拟结果还表明,增大新翼型肋宽对换热的影响不大但明显增大通道内压降。较低温度和质量流量有利于减小翼型肋通道内的局部参数振荡,从而保证换热设备稳定安全运行。本文从单直通道受均匀热流的数值模型入手,到探究非均匀热流条件对换热性能的影响,再基于实际换热器建立耦合模型进行分析,最后实验测试新结构PCHE,逐步深入。研究阐明了复杂工质在不同结构通道内的换热机理,获得了优化的通道结构,且针对水平通道内流体物性变化导致的浮升力效应提出了新的判别式,可为以变物性流体为工质的新型紧凑式换热器的优化设计提供重要参考。
其他文献
压缩空气储能(Compressed Air Energy Storage,CAES)广泛应用于可再生能源电力系统中。透平膨胀机为C AES系统的核心部件,其将压缩空气的内能转换为机械能,从而带动发电机做功输出电能。与电厂重型燃气轮机、蒸汽轮机以及航空发动机高压/低压涡轮的工况不同,CAES系统透平具有入口温度较低、膨胀比较高以及变工况运行频率高等特点。然而目前针对储能系统透平膨胀机内部的流动特性及
随着飞机对航空发动机性能要求的不断提升,推动航空发动机一直朝着高推重比、低油耗、高机动性和高可靠性的方向发展。推重比作为衡量航空发动机性能的重要指标,对于飞机的飞行速度、机动性等都具有重要的影响。压气机作为航空发动机关键部件之一,其长度和重量约占发动机整机的一半左右,因此提升压气机级负荷,减少压气机级数,发展结构紧凑的气动布局形式对发动机推重比的提高具有关键作用。压气机级负荷提升的同时,其转子进口
太阳能因其分布广泛、储量丰富、易于获取,是近年来发展最迅速的可再生能源。太阳能利用在快速扩大规模的同时,仍然面临转化效率低、成本高的瓶颈。究其原因,是当前主流的太阳能利用手段对聚光太阳能的最大做功能力利用不佳,从原理上限制了转化效率。挖掘聚光太阳能全光谱的做功潜力,将聚光太阳光子与合适转化路径匹配,或是寻找新的全光谱转化路径,是当前太阳能研究的增效突破口。本文依托“能源有序转化”基础科学中心项目、
储能技术可以促进可再生能源大规模发展,有效解决我国能源环境问题。压缩空气储能系统具有存储容量大、寿命长、不受地理环境限制等优点,是一项极具发展前景的储能技术。压缩机是压缩空气储能系统的核心设备,其性能对整个系统效率和储能经济性有着决定性影响。不同于普通工业中通常在设计工况附近运行的压缩机,储能系统压缩机需具备在较宽流量、压比范围内高负荷高效率运行的能力。因此,提高压缩机高效变工况能力,为压缩机提供
现代航空发动机和燃气轮机压缩系统设计(modern design)为了提升性能、缩小尺寸、减重、降耗,倾向于使用更轻薄的叶片设计、更小的叶片轴向间距、零部件更少的整体叶盘结构,这使得叶片更容易出现气动弹性问题。在压缩系统,尤其是风扇部件,颤振及由非定常流动诱发的叶片振动问题尤其突出。现有的研究中,大多数仅关注孤立转子的气动弹性表现,忽视了叶排之间的压力反射和干扰。本文依托国家科技重大专项,探索了级
水平轴风电机组大型化发展和复杂运行环境使叶片高度非定常的流动状态更加明显,叶片会经历动态失速过程,导致更高的升力损失和疲劳载荷,并使实际功率预测不准确,因此需要发展与之相适应的动态气动评估模型。然而,用于评估翼型动态气动特性的模型主要源于直升机螺旋桨的相关研究,在风力机的应用中并未得到充分验证。同时,出于提高叶片环境适应性和增功增效的需要,流动控制附件涡流发生器应用广泛,但目前缺乏关于考虑涡流发生
水泥工业作为能源、资源消耗密集型工业,为我国经济社会发展做出巨大贡献的同时,也带来了不可忽视的环境问题。现阶段,我国水泥生产中排放氮氧化物的量约占全国工业排放总量的10-12%,仅次于火力发电、汽车尾气。水泥窑炉NOx排放标准日趋严格,NOx超低排放是水泥工业面临的严峻挑战。目前广泛采用的水泥脱硝技术难以满足日益严苛的NOx排放标准。对于水泥工业而言,选择性催化还原(SCR)技术中催化剂易失活、经
压气机气动稳定性是关乎发动机研制成败的关键技术问题。由于具有结构紧凑、零部件少、压比高、可靠性高等优势,离心压气机在中小型航空发动机中得到了广泛应用,随着离心压气机压比的不断增加,给离心压气机稳定性提出了更高的要求。进一步深化对离心压气机流动失稳触发机理的认识,并对其进行调控,拓宽压气机的稳定工作范围,对于提高中小型航空发动机的性能和可靠性具有十分重要的意义。本文根据现阶段高压比离心压气机研究现状
化石燃料的清洁高效利用是当今社会面临的重要课题。进入21世纪以来,世界航空事业快速发展,航空燃料的消耗量快速增加。当燃料燃烧不充分时,会影响发动机的工作效率,并产生大量的碳烟对环境造成污染。因此,提高航空燃料的燃烧效率,降低燃烧过程中的污染物排放,对实现化石燃料的节能减排具有重要意义。航空燃料起源于20世纪中期,经过几十年的发展,现在已经有多种类型的航空燃料被应用于军用和民用的航空飞机中。对航空燃
新一代航空发动机为达到高推重比、矢量推力、高效加力等目的,提高了压比、涡轮前温度、加力燃烧室进口温度和压力等。加力燃烧室参数向着更高进口温度、更低进口氧浓度、更大进口气流速度、更低阻力及更小尺寸重量等方向发展,这为加力燃烧组织带来了严峻挑战。为实现加力燃烧室内高效稳定的燃烧,本文提出了一种基于无稳定器的加力燃烧组织方法,将加力燃油从涡轮前或涡轮级间喷入流道,并在涡轮出口布置混合器,使燃油在穿越涡轮