【摘 要】
:
分布式光纤传感技术为基础设施的结构健康监测提供了一种高效、经济的解决方案。该技术可应用于长距离的振动检测领域,如石化管道、电力线缆、铁路轨道、周界安防和地震检测等。近年来,相位敏感光时域反射计(Φ-OTDR)作为分布式光纤传感技术的典型代表,以其结构简单、灵敏度高、响应速度快、铺设方案简单等优点,越来越受到人们的重视。Φ-OTDR系统借助对外界振动极为敏感的激光相位信息来实现振动事件的感知,但环境
论文部分内容阅读
分布式光纤传感技术为基础设施的结构健康监测提供了一种高效、经济的解决方案。该技术可应用于长距离的振动检测领域,如石化管道、电力线缆、铁路轨道、周界安防和地震检测等。近年来,相位敏感光时域反射计(Φ-OTDR)作为分布式光纤传感技术的典型代表,以其结构简单、灵敏度高、响应速度快、铺设方案简单等优点,越来越受到人们的重视。Φ-OTDR系统借助对外界振动极为敏感的激光相位信息来实现振动事件的感知,但环境噪声和器件噪声常会对系统的稳定性产生影响,具体表现在以下三个方面:激光光源频率漂移所造成的输出不稳定现象,激光功率放大非线性效应所形成的调制不稳定现象,以及激光相位正交解调不平衡所引起的还原不稳定现象。以上系统的不稳定因素会对Φ-OTDR系统的传感距离、频响范围、误报概率产生较大的影响。针对系统的以上问题,本文的主要研究内容与创新工作如下:(1)提出了一种用于低频振动检测的自适应脉冲调制技术。通过使探测脉冲光的脉冲重复频率进行自适应变化,使振动引起的相位变化频率低于脉冲重复频率,从而在振动区域实现了稳定的强度变化。实验中,使用了两种不同的脉冲重复频率来验证自适应脉冲调制方法检测低频振动事件的有效性,在1 km光纤长度上分别实现了对频率为5 Hz、1 Hz、0.5 Hz和0.1Hz的低频振动事件的检测,拓宽了系统在低频端的频响范围。(2)研究了Φ-OTDR系统中的调制不稳定性效应,分析了探测光的脉冲波形对后向散射曲线的影响,指出了调制不稳定性效应和费米-帕塔-乌拉姆重复现象的关联性。经证明,当探测脉冲的波形在一定时间内不保持功率水平时,可以部分消除费米-帕塔-乌拉姆重复现象,并且对系统的调制不稳定性效应不敏感。实验中,Φ-OTDR系统采用三角形脉冲波形和高斯型脉冲波形,均比矩形脉冲波形更能抵抗调制不稳定性的影响。(3)建立了一种对I/Q正交双通道幅相不平衡不敏感的相干光脉冲相位旋转反射测量系统。该系统利用光脉冲相位旋转和积分技术,通过多组具有规则相移的I/Q正交信号的积分,以相互消除单个信号所携带的正交不平衡影响。实验中,在传统I/Q相位解调技术受正交不平衡影响而完全不能恢复相位信号的情况下,该系统可对100 Hz正弦振动信号进行相位恢复,证明了系统对I/Q正交不平衡具有稳定的不敏感性。
其他文献
镁合金因其轻质、减震性好等优点,广泛应用于航空航天、交通运输以及电子通讯等领域。然而,许多构件,如飞机蒙皮、汽车覆盖件等,在要求材料轻质的同时,也要求其具有足够的强度和刚度。单一镁合金板难以满足高强度和高刚度的要求,严重限制了其进一步的应用。本文分别选用不锈钢和碳纤维作为复合增强体,制备两类高强度高刚度镁基层合板:首先选取强度刚度较高的304奥氏体不锈钢(ASS)为外层覆板,选取1060铝合金为过
6.25 m捣固焦炉成套设备是焦化生产中广泛使用的先进的机械设备,该设备的使用对于提高焦炭产量、降低能耗、减少污染物的排放具有明显的经济效益和社会效益。推焦装置作为该成套设备的核心部件,在使用过程中存在明显的振动现象,该振动不仅会影响推焦设备的正常工作和使用,还可能导致焦饼坍塌,造成设备停机无法工作。因而,深入研究推焦装置的振动机理对于减轻推焦装置的振动具有十分重要的理论和工程应用价值。推焦装置工
作为能源革命的排头兵,提高煤系气采收率是山西“十四五”及今后更长一个时期的重要工作。煤系气储层具有薄层状、多岩性互层和塑性较强等特点,且在不同区域和不同层位形成了不同组合类型,为高效压裂提高抽采带来了很大困难。已有工作多使用水力压裂进行单一储层致裂,造成资源动用程度低、煤系气合采效果不尽理想等问题。针对不同煤系气储层类型采取适应性致裂方法将是煤系气合压共采的发展趋势。通过现场调研、数据统计、理论分
我国能源资源禀赋特点及保障能源安全战略决定了煤炭在未来较长一段时期内仍将是我国重要的基础能源。如何清洁、高效、高值转化利用储量丰富但又尚未规模开采的中低变质程度煤是一个不容忽视的重要课题。近年来,基于物质分级转化、能量梯级利用的多联产系统技术,中低变质程度煤分级高附加值转化利用得到广大研究者的认可和政府推广。本学位论文研究工作主要针对中低变质程度煤热解焦油的化学组成结构特点,设计高效高值转化利用合
传统陶瓷颗粒增强Al基复合材料存在颗粒-基体界面润湿性差、界面结合强度低及颗粒与基体塑性变形协调能力差等问题,导致陶瓷颗粒在提高材料强度的同时严重恶化了材料的塑性。高熵合金(HEA)颗粒与Al基体良好的界面润湿性以及高强度、高硬度和良好的热稳定性展现出其作为一种新型强化相的巨大潜力。论文提出以Al Co Cr Fe Ni HEA颗粒为强化相、5083Al合金为基体,利用放电等离子烧结技术(SPS)
大采高综采因其适用性强和工艺简单等优势,已成为我国厚煤层开采的主要方法之一。然而随着开采深度的增加和开采高度的加大,大采高综采煤壁片帮问题更加突出,严重地制约了工作面安全、高效生产。大采高综采煤壁片帮以斜直线型和圆弧型滑移为主,占比80%以上。现有成果多采用滑动体理论研究两种片帮的破坏机理及影响因素,但是在研究过程中,存在煤壁稳定性安全系数变化规律不明、最大滑移深度及最危险滑移面难以预测等问题,由
原位热解油页岩的过程中,因升温而不断增长的热应力会使油页岩内部应力不断增加。应力场的改变不仅会影响井筒的稳定性,还会造成矿体内部裂隙闭合,阻碍传热介质及产物的运移,进而导致在原位热解油页岩过程中需要对矿体进行产物运移通道的二次改造。因此,研究油页岩在实时高温作用下,其压缩变形过程中力学特性变化规律、确定压裂参数以及掌握裂纹起裂后的扩展规律,对实现油页岩在原位状态下科学高效开采至关重要。本文通过室内
石墨烯具有优异的力学性能、良好的导热、导电性能、较大的比表面积以及轻质等特性,将其与金属材料复合有望获得具有轻质、高强高韧、高导热、高导电和耐磨等优点的石墨烯/金属基复合材料。即石墨烯作为功能体可赋予金属材料一些其本身不具备的物理性质,使石墨烯/金属基复合材料具有多样的功能特征而在航空航天、机械装备、电子和电力等领域具有广阔的应用前景。然而,石墨烯/金属基复合材料的力学性能仍没有达到理想效果,尤其
随着我国矿业现代化进程的稳步推进,采矿装备的电气化带动了采矿技术的快速发展,开采规模也随之不断扩大。融合大数据、云计算、人工智能以及工业5G等新型信息技术的智能化采矿方法,不仅能达到“无人”矿井的行业目标,更成为保障我国能源安全与促进经济高质量发展的全新机遇。尽管信息化技术成熟度不断提高,综采放顶煤技术在我国经过四十余年的发展也已经取得明显进步,但智能化综放开采仍然存在一些问题亟待解决,主要体现在
甲烷水合物,是由主体水分子和客体甲烷分子在特定低温高压下形成的非化学计量笼型络合物,具备储量巨大、绿色环保和能源密度高等特性,被认为是继煤层气、页岩气和致密气之后最具潜力的非常规接替能源之一。甲烷水合物的安全高效开采一直是目前科学界和工业界研究的重要焦点。目前,关于甲烷水合物开采方法主要包括降压法、热激法、注化学试剂法、CO2-CH4置换法和其他方法等。其中,降压法是科学界公认的一种高效低耗的开采