砂质水合物降压开采影响因素与方法的实验研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:fencer_2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
甲烷水合物,是由主体水分子和客体甲烷分子在特定低温高压下形成的非化学计量笼型络合物,具备储量巨大、绿色环保和能源密度高等特性,被认为是继煤层气、页岩气和致密气之后最具潜力的非常规接替能源之一。甲烷水合物的安全高效开采一直是目前科学界和工业界研究的重要焦点。目前,关于甲烷水合物开采方法主要包括降压法、热激法、注化学试剂法、CO2-CH4置换法和其他方法等。其中,降压法是科学界公认的一种高效低耗的开采方法,该方法被广泛研究,具有很好的应用前景。然而,降压开采过程中存在低温冰点、水合物二次合成、初期大量产水、低回收效率和地层形变等问题。因此,研究降压开采过程中不同影响因素和降压方法对流体流动、温度变化、动力学以及能效分析等影响特性具有重要意义。本文通过实验在以下两个方面开展研究:(1)开展了不同影响因素(氯化钠体系和水合物饱合度)对降压开采过程中的流体回收速率、流体回收率、温度变化特征等影响规律;(2)针对具有相同储层特征的甲烷水合物,分析了两种降压方法下(不同降压幅度和不同降压路径/多阶段),降压开采过程中的流体产量与温度变化特征、开采动力学和能效分析等。研究内容和主要结论如下:(1)搭建了三轴应力甲烷水合物合成和分解实验平台,进行了纯水和3.0%质量分数的氯化钠溶液两种体系下甲烷水合物合成的实验研究,分析了初始/总水气比、反应压力、反应温度和氯化钠对甲烷水合物合成过程的影响规律。研究发现:三轴应力下,过水法合成甲烷水合物时,最终的水合物相饱和度大小很大程度上取决于初始注气量。在相同热力学条件下,稍高于理论化学计量水合物数(5.75)的初始水气比有利于甲烷的转化,提高了甲烷转化率。较高的反应压力缩短了甲烷水合物合成所需的诱导时间,同时加快了水合物合成的速率。但压力对最终的水合物相饱和度大小影响不大。较高的初始温度增加了甲烷水合物合成的诱导时间。小范围的温度变化对水合物合成的速率和最终的甲烷水合物相饱和度影响不大。氯化钠(XNaCl=3.0 wt%)作为一种典型甲烷水合物合成热力学和动力学的抑制剂,增加了甲烷水合物合成所需的诱导时间和合成消耗的总时间,但对最终的甲烷转化率和水合物相饱和度的大小影响较小。在排盐效应的影响下,甲烷水合物合成过程中氯化钠溶液的质量分数在合成第一阶段末达到了甲烷水合物合成过程中的最大值(XNaCl=5.29%),最后稳定在XNaCl=4.12%。(2)采用三轴应力水平反应釜,进行了氯化钠溶液体系下的甲烷水合物降压实验研究,分析了氯化钠对流体产量回收率、开采动力学和开采过程中轴压围压的影响规律。研究发现:三轴应力降压开采中,氯化钠体系一定程度上增加了甲烷回收的速率和回收率。在相同的井底压力下,氯化钠体系减小了水的最终回收率,两种不同体系下,井底压力为1.0 MPa时,水最终回收率的偏差达到了7.32%。此外,反应釜内的压力呈现出独特的四阶段方法,包括:快速下降阶段、振荡阶段、阶梯式阶段和稳定阶段。大部分的甲烷回收发生在压力振荡阶段和阶梯式下降阶段。同时,围压呈现出一个模拟反应釜内压力变化的趋势,轴压呈现出阶梯式下降趋势。(3)针对具有不同饱和度储层特征的甲烷水合物,系统地分析了不同水合物饱和度(SH=20%、SH=40%、SH=60%和SH=80%)对降压开采过程终流体产量回收率、开采动力学和温度变化等影响特征。首次在较低的最终水气比(7.7)下,过水法合成了超高水合物相饱和度(SH=80%)的甲烷水合物样品,拓宽了对不同饱和度甲烷水合物降压开采的实验研究。研究发现:在相同的降压路径和降压幅度下,越高饱和度的甲烷水合物分解后可以得到越大的甲烷回收率,说明越高饱和度的甲烷水合物越具有商业开采价值。然而,不同饱和度甲烷水合物的水最终回收率保持在相同水平。水合物饱和度越低,不同降压路径(一阶段和三阶段)对最终甲烷气体和水回收率的回收率影响较小。而且,相比一阶段降压方法,三阶段降压方法一定程度上提高了最低温度,饱和度越低效果越明显,饱和度为20%时,最低温度提高到4.19℃,饱和度为80%时,最低温度提高到1.60℃。(4)针对高饱和度(SH>55%)的甲烷水合物,分析了不同降压幅度(井底压力BHP=1.5 MPa、3.0 MPa和4.5 MPa)开采过程中,流体产量回收率、开采动力学和开采过程中温度变化的影响规律。研究发现:无论降压幅度的大小,产气总是滞后于产水,产水总是提前于产气结束。降压阶段,水的回收率高达90%,而甲烷气体的回收大部分发生在恒压阶段。较低的井底压力导致更快的甲烷回收速率和较高的甲烷和水气体回收率。当采用接近相平衡压力的井底压力(BHP=4.5 MPa)时,甲烷回收速率和回收率大幅下降,其中,甲烷最终回收率减小了62%。较大的井底压力很大程度上提高了最低温度。井底压力为1.5 MPa时,最低温度为-0.30℃,而井底压力为4.5 MPa时,最低温度为5.33℃。(5)针对高饱和度(SH>55%)的甲烷水合物,分析了不同降压路径(多阶段)开采过程中,流体产量回收率、开采动力学和开采过程中温度变化的影响规律。研究发现:最终的流体回收率取决于最后反应釜的热力学条件,降压阶段数量的多少对其影响不大。产气方面,多阶段降压方法明显比一阶段降压方法在时间上滞后,当井底压力位于相平衡曲线的压力之上时,多阶段降压几乎没有甲烷气体产生,只产生了19%-32%的水;当井底压力降到4.6 MPa的相平衡压力之下(T=6.0℃)时,才可以从反应釜中回收到甲烷气体。之后开始大量产气,尤其在恒压阶段。产水最多的阶段是从开始降压到井底压力首次降到相平衡压力;而产气最多的阶段是在井底压力保持在3.0 MPa的恒压阶段内。另外,降压阶段数量的增加使得水合物降压分解过程中的最低温度提高了2.2℃。多阶段降压开采可以很大程度上减小了初始产水量,同时降低了产水速率,把产水过程分配到每一个降压阶段。
其他文献
近年来,机械响应荧光材料(MRL)在力传感、信息存储、显示等领域显示出巨大的应用潜力。其中,具有推-拉型结构的机械响应有机荧光小分子材料,可以通过选择不同种类的电子给体和电子受体来对分子结构进行灵活的调控,极大地提高了分子的多样性,从而受到研究人员的广泛关注。然而,如何提高MRL材料力响应信号的对比度,拓展它们在力检测和信息存储等方面的应用还需要进行深入的研究。为了提高MRL材料力响应信号的对比度
镁合金因其轻质、减震性好等优点,广泛应用于航空航天、交通运输以及电子通讯等领域。然而,许多构件,如飞机蒙皮、汽车覆盖件等,在要求材料轻质的同时,也要求其具有足够的强度和刚度。单一镁合金板难以满足高强度和高刚度的要求,严重限制了其进一步的应用。本文分别选用不锈钢和碳纤维作为复合增强体,制备两类高强度高刚度镁基层合板:首先选取强度刚度较高的304奥氏体不锈钢(ASS)为外层覆板,选取1060铝合金为过
6.25 m捣固焦炉成套设备是焦化生产中广泛使用的先进的机械设备,该设备的使用对于提高焦炭产量、降低能耗、减少污染物的排放具有明显的经济效益和社会效益。推焦装置作为该成套设备的核心部件,在使用过程中存在明显的振动现象,该振动不仅会影响推焦设备的正常工作和使用,还可能导致焦饼坍塌,造成设备停机无法工作。因而,深入研究推焦装置的振动机理对于减轻推焦装置的振动具有十分重要的理论和工程应用价值。推焦装置工
作为能源革命的排头兵,提高煤系气采收率是山西“十四五”及今后更长一个时期的重要工作。煤系气储层具有薄层状、多岩性互层和塑性较强等特点,且在不同区域和不同层位形成了不同组合类型,为高效压裂提高抽采带来了很大困难。已有工作多使用水力压裂进行单一储层致裂,造成资源动用程度低、煤系气合采效果不尽理想等问题。针对不同煤系气储层类型采取适应性致裂方法将是煤系气合压共采的发展趋势。通过现场调研、数据统计、理论分
我国能源资源禀赋特点及保障能源安全战略决定了煤炭在未来较长一段时期内仍将是我国重要的基础能源。如何清洁、高效、高值转化利用储量丰富但又尚未规模开采的中低变质程度煤是一个不容忽视的重要课题。近年来,基于物质分级转化、能量梯级利用的多联产系统技术,中低变质程度煤分级高附加值转化利用得到广大研究者的认可和政府推广。本学位论文研究工作主要针对中低变质程度煤热解焦油的化学组成结构特点,设计高效高值转化利用合
传统陶瓷颗粒增强Al基复合材料存在颗粒-基体界面润湿性差、界面结合强度低及颗粒与基体塑性变形协调能力差等问题,导致陶瓷颗粒在提高材料强度的同时严重恶化了材料的塑性。高熵合金(HEA)颗粒与Al基体良好的界面润湿性以及高强度、高硬度和良好的热稳定性展现出其作为一种新型强化相的巨大潜力。论文提出以Al Co Cr Fe Ni HEA颗粒为强化相、5083Al合金为基体,利用放电等离子烧结技术(SPS)
大采高综采因其适用性强和工艺简单等优势,已成为我国厚煤层开采的主要方法之一。然而随着开采深度的增加和开采高度的加大,大采高综采煤壁片帮问题更加突出,严重地制约了工作面安全、高效生产。大采高综采煤壁片帮以斜直线型和圆弧型滑移为主,占比80%以上。现有成果多采用滑动体理论研究两种片帮的破坏机理及影响因素,但是在研究过程中,存在煤壁稳定性安全系数变化规律不明、最大滑移深度及最危险滑移面难以预测等问题,由
原位热解油页岩的过程中,因升温而不断增长的热应力会使油页岩内部应力不断增加。应力场的改变不仅会影响井筒的稳定性,还会造成矿体内部裂隙闭合,阻碍传热介质及产物的运移,进而导致在原位热解油页岩过程中需要对矿体进行产物运移通道的二次改造。因此,研究油页岩在实时高温作用下,其压缩变形过程中力学特性变化规律、确定压裂参数以及掌握裂纹起裂后的扩展规律,对实现油页岩在原位状态下科学高效开采至关重要。本文通过室内
石墨烯具有优异的力学性能、良好的导热、导电性能、较大的比表面积以及轻质等特性,将其与金属材料复合有望获得具有轻质、高强高韧、高导热、高导电和耐磨等优点的石墨烯/金属基复合材料。即石墨烯作为功能体可赋予金属材料一些其本身不具备的物理性质,使石墨烯/金属基复合材料具有多样的功能特征而在航空航天、机械装备、电子和电力等领域具有广阔的应用前景。然而,石墨烯/金属基复合材料的力学性能仍没有达到理想效果,尤其
随着我国矿业现代化进程的稳步推进,采矿装备的电气化带动了采矿技术的快速发展,开采规模也随之不断扩大。融合大数据、云计算、人工智能以及工业5G等新型信息技术的智能化采矿方法,不仅能达到“无人”矿井的行业目标,更成为保障我国能源安全与促进经济高质量发展的全新机遇。尽管信息化技术成熟度不断提高,综采放顶煤技术在我国经过四十余年的发展也已经取得明显进步,但智能化综放开采仍然存在一些问题亟待解决,主要体现在