入射夸克的能量损失

来源 :河北师范大学 | 被引量 : 1次 | 上传用户:seaking888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
入射夸克的能量损失效应是有别于深度非弹性散射中部分子分布函数的核效应的另一种核效应。强子-原子核碰撞的Drell-Yan过程是研究冷核中入射夸克的能量损失效应的最佳过程,通过研究核Drell-Yan过程的研究,可以更好的了解入射夸克在核环境传播过程中的能量损失情况。E772和E866实验组报导了他们用800GeV的质子分别打击、Be、C、Ca、Fe和W的原子核(A)的两个原子核的每个核子的Drell-Yan反应截面的比。尽管两个实验组的目的有所不同,但是,他们获得的实验数据为我们研究入射夸克在核环境传播过程中的能量损失提供了实验基础。   本文使用HKM束缚核子中部分子分布函数,分别考虑两种不同入射夸克的能量损失参数式,调用CERNLIB的MINUIT 来求2χ的最优化,分别处理E772和E866的实验数据。通过对E772和E866实验数据进行整体分析,我们得到两种不同入射夸克的能量损失表达式中的参数及它们理论上的不确定度分别为α(x1,x2)=1.279+0.093-0.09,β(x1,x2)=0.215+0.017-0.015。
其他文献
针对金川三矿区破碎硐室进行了较系统的支护设计研究,得到了一些有价值的成果。首先根据工程地质和围岩自身的特点,在原设计方案的基础之上提出了三步开挖、二次支护和三次让
教学活动是“教”与“学”的结合,是教师与学生的双边互动.将教师课堂讲解与学生课堂学习充分结合才能提高学习效率,进而提高教学质量.本文主要从互动教学的角度分析了当前小
露天采煤和井下采煤相比,拥有高生产率,低事故率,便于设备维护维修等客观优势。不管是在国内还是国际上,大力发展露天开采都是大趋势。作为露天采矿生产所必须的重要设备之一
随着稀薄碱金属原子气体中玻色-爱因斯坦凝聚(Bose-EinsteinCondensation,缩写为BEC)现象的实现,原子-分子玻色-爱因斯坦凝聚系统已经引起了人们的极大兴趣。通过磁场Feshbach
随着因特网和流媒体技术的迅速发展,出现了网络电视(IPTV)这种融合互联网和传统电视的新业务。IPTV通过宽带网络,向家庭用户提供包括数字电视在内的多种交互式服务。IPTV业务
本论文采用低压等离子体化学气相沉积方法(LPP-CVD),分别在四甲基硅烷(TMS)、反式二丁烯(T2B)、氢气(H2)混合气体下,成功的制备出了掺硅氢化非晶碳(a-C:H)薄膜。利用台阶仪、X射线光电子能谱(XPS)、傅立叶变换红外吸收谱(FTIR)、紫外-可见光谱(UV-VIS)等测试手段,对薄膜的沉积速率、成分、微观结构及光学等性能进行了测试和表征,建立了薄膜的沉积速率、成分、微观结构及性能
氧还原反应是燃料电池和金属-空气电池中至关重要反应过程。传统的氧还原反应催化剂是贵金属铂(Pt)基催化剂。然而,其价格昂贵、储量有限,为降低反应成本需要制备新型的替代催化剂。非金属碳基催化剂价格低廉、稳定性好,是一种有潜力的氧还原催化剂材料。石墨炔基碳材料是一种具有sp杂化碳原子的新型共轭碳二维材料,其特殊的结构使其在众多领域均表现出了优异的性能。本研究基于石墨炔基碳材料,通过N修饰,调控其电荷分
学位
随着国家对高等职业教育的关注近几年来高等职业院校在随着社会的发展而快速崛起,国内经济形势的变化是专业技术型人才成为新兴的高收入人群,众多家长也从社会发展中看出来高
永磁材料是一种具有实现机械能与电磁能相互转换功能的磁性材料,由于永磁材料的能量转化功能和磁的各种物理效应,使其成为计算机、网络信息、家用电器、通讯、交通运输、航空航天等诸多高新技术领域的核心器件。纳米复合永磁材料是一种新型的稀土永磁材料,由软磁性相和硬磁性相在纳米尺寸范围内复合而成,有望发展成为新一代稀土永磁材料。目前实验上制备的纳米复合永磁材料的磁能积与理论预期值相差较大,原因是纳米复合永磁材料
纳米材料由于具有体相材料所不具备的新奇的物理与化学性质引起了人们广泛的研究和关注。在本论文中,采用几种不同的方法合成了几种不同的纳米结构——用气相沉积法合成了SnO