论文部分内容阅读
铍铝合金比金属铍更节约铍资源,具有优异的力学性能、热学性能、光学性能和良好的加工性能,可以在大部分领域替代金属铍的应用,在航空航天领域具有极强的竞争优势和良好的发展前景。铍铝合金是一种双相金属基复合材料,国外通常采用强度较低的纯铝作为基体,限制了其力学性能。本文从合金强化、界面反应控制的角度设计了铍铝合金的成分;从提高综合力学性能的角度,分别采用真空热压烧结、放电等离子烧结和热等静压烧结制备了铍铝合金试样和产品;从控制微观组织和界面反应的角度,分别采用X射线衍射仪、扫描电镜、高分辨透射电镜、差示扫描量热仪等研究了铍铝合金的界面润湿性、界面反应和时效行为。主要研究内容和结果如下:(1)提出了铝合金基体中合金元素的选择依据,设计了铍铝合金成分。基于位错的微观力学模型、修正的剪切滞后模型,结合Weibull统计和Eshelby等效夹杂法,构建预测铍铝合金屈服强度的理论模型。模型分析结果表明,铝合金基体的强度、铍相的晶粒尺寸、铍铝两相的界面结合强度是铍铝合金屈服强度的重要影响因素。从热力学角度讨论了合金元素对铍相和铝相界面结合强度的影响。液态铝和固态铍、液态铝和固态氧化铍之间的润湿性决定铍相和铝相界面结合强度,在铝合金基体中添加Mg、Si等元素可以改善液态铝和固态铍、液态铝和固态氧化铍之间的润湿性,从而提高界面结合强度。结果表明,主要合金元素为Mg和Si的铝合金是铍铝合金的理想基体;铍铝合金的弹性模量随着铍含量的增加而增大,当Be含量为62wt.%,铍铝合金的弹性模量为200GPa,理论密度为2.10g/cm3,该成分的铍铝合金具有明显的比刚度优势。(2)系统研究了粉末冶金工艺对铍铝合金组织和性能的影响。干混球磨时间会影响铍铝混合粉末的成分均匀性和总氧量。随着球磨时间的增加,混合粉末的成分均匀性不断提高,但总氧量不断增加,球磨6h可以获得成分均匀、氧含量低于1.5wt.%的铍铝混合粉末。研究了冷等静压压力对铍铝混合粉末的压坯密度的影响。铍铝混合粉末的冷等静压行为符合粉末压制双对数方程,铍铝混合粉末压坯的密度随冷等静压压力的增加而近乎线性增加,在冷等静压压力为270MPa时,铍铝混合粉末压坯的致密度可达87%。烧结温度对铍铝合金的组织有显著影响。过高的烧结温度会导致铍铝合金组织中铝相发生团聚或者熔化渗出;在优化的工艺参数下,真空热压烧结、热等静压烧结和放电等离子烧结均可制备冶金质量良好,界面结合强度高,组织细小,无孔洞、裂纹等缺陷、力学性能优异的铍铝合金。(3)研究了不同铍颗粒尺寸、不同铝基体以及不同烧结方法对铍铝合金力学性能的影响。在铍含量相同的情况下,铍相晶粒尺寸由40μm减小到10μm,铍铝合金的延伸率基本不变,但是铍铝合金的屈服强度由195MPa提高到265MPa,抗拉强度由310MPa提高到383MPa;Be-38wt%Al和Be-38wt.%Al-Mg-Si的弹性模量基本相同,但Be-38wt.%Al-Mg-Si的屈服强度和抗拉强度均高于Be-38wt.%A1;相比于真空热压烧结,热等静压烧结的致密化烧结温度更低,得到的Be-38wt.%Al-Mg-Si的弹性模量、屈服强度、抗拉强度更高,其屈服强度和抗拉强度分别为265MPa和383MPa,与国际上相同铍含量的轧制态粉末冶金铍铝合金的屈服强度和抗拉强度相当。(4)研究了铍铝合金组织中合金元素的分布、相界面结构及取向关系。扫描电镜、高分辨透射电镜分析结果表明,热等静压态Be-38wt.%Al-Mg-Si的Mg和Si主要分布在A1基体中,铍铝两相界面处几乎没有反应产物生成;铍相和铝相之间没有完整的三维共格界面或半共格界面,随着界面处位错密度的增加,铍相和铝相形成了非共格界面;铍相和铝相会倾斜一定角度并保持特定的晶体取向关系以达到界面能量最低:[011]Al//(?)Be,(?)Al~0.8°(?)Be(5)研究了时效温度和时间对铍铝合金组织和力学性能。采用扫描电镜、高分辨透射电镜分析了铍铝合金在不同时效阶段的组织形貌,结合差示扫描量热法的实验结果得出了铍铝合金的时效析出序列和时效动力学。在时效温度为170℃时,Al-Mg-Si合金达到硬度峰值的时间为14h,而Be-38wt.%Al-Mg-Si达到硬度峰值的时间为8h;Be-38wt.%Al-Mg-Si的时效析出顺序与Al-Mg-Si合金相似,但GP区的形成受到抑制;Be-38wt.%Al-Mg-Si在170℃、保温8h后,Mg和Si元素已在铍铝界面上偏析;Be-38wt.%Al-Mg-Si中针状β"相在Al基体中单独析出或沿AI基体中的位错析出,并与A1基体保持一定的位向关系:[304]β’’//[001]Al,(?03)β’’//(200)Al,(020)β’’//(020)Al;(010))β’’//(001)Al,[100]β’’//[(?)30]Al,[001]β’’//[310]Al。不同铍含量的热等静压态Be-38wt.%Al-Mg-Si在时效后屈服强度和抗拉强度均显著提高;当人工时效温度为170℃、时效时间为8h时,Be-38wt.%Al-Mg-Si的屈服强度和抗拉强度分别为340MPa和416MPa,高于国际相同铍含量的粉末冶金铍铝合金的最高屈服强度和抗拉强度。