各向异性多孔材料的强度与断裂问题研究

来源 :清华大学 | 被引量 : 0次 | 上传用户:whfbbs
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在页岩气开采过程中,定向钻井与水力压裂是两个关键工程步骤,而它们都是在页岩这种各向异性材料中完成的。页岩在宏观上由于沉积作用表现出本构、强度与断裂的各向异性,在微观上则呈现出多孔介质材料的特征。因而对于页岩这种各向异性多孔材料的强度性质和断裂行为研究具有重要的科学意义和工程价值。多孔充液弹性本构模型将固体骨架与含有流体的连通孔隙在宏观上看作一种均匀材料,避免了讨论复杂的微观结构,同时可以描述介质中耦合的固体变形和流体扩散过程。本文对于各向异性多孔充液弹性本构模型建立统一的框架,澄清各向异性多孔充液弹性本构中独立的材料常数个数,并讨论在固体骨架中不连通的孔隙流体(液岛)带来的非均匀性对于本构模型的影响。在分析了不同的本构模型基本假设后,本文将多孔弹性中的基本假设区分为四个水平,并证明了这些假设所带来的影响都只出现在一个独立的材料常数中。而这个材料常数也包含了很多不用测或是不可测的其它材料常数。在所构建的各向异性多孔充液弹性本构的基础上,本文讨论了在多孔充液弹性介质中钻井时许可的钻井液压力范围。本文提出了瞬时、短时、长时解的概念,并对于这三个时刻给出了井眼问题分别使用各向同性和横观各向同性多孔弹性本构模型下的解析解。进一步地,本文分别使用两种拉伸破坏准则和六种剪切破坏准则,得到了对应情况下的井眼破坏临界压力的代数表达式、对应的破坏位置与时间、以及井眼压力是过高还是过低了的判断,方便工程师直接应用。结果表明,目前石油工业界所使用的基于经典广义虎克定律的井眼安全校核准则可能偏于危险了,本文推荐在多孔性质显著的岩石中使用多孔充液弹性本构进行安全校核。对于页岩这种具有各向异性断裂韧性的岩石,本文也从理论和数值上分析了裂纹在其中的扩展规律。针对页岩的特性,本文构造了一种弱面模型,以表征页岩在层理面方向上断裂韧性低于其他方向的特征。通过将最大能量释放率准则应用在弱面模型上,本文给出了弱面模型中裂纹扩展方向的理论预测方法,并阐释了裂纹扩展禁止区的现象。本文也将弱面模型引入到扩展有限元方法中,并发展网格无关的分段线性裂纹算法高精度地捕捉裂纹路径,实现各向异性断裂韧性材料中裂纹扩展路径的模拟。本文还分析了裂纹在弱面材料中周期性振荡扩展的现象。
其他文献
强相互作用下的量子多体系统可以在低能下演生出丰富的强关联物相与相变现象。在传统理论中,物相与相变由对称性来刻画,然而有一大类新发现的物相,其根本描述在于拓扑而非对称。在本文中,我将围绕高温超导与量子磁性聚焦到几个典型的零温量子强关联多体系统来探讨一些新奇的拓扑物相与相变。受到铜基高温超导实验的启发,我们在描述铜氧面低能物理的t-J模型中引入反铁磁外场耦合,研究超导配对对称性与能隙所受到的影响。在电
Landau-Ginzburg模型一直以来同时受到数学家们与物理学家们的双重关注。围绕Landau-Ginzburg模型的数学研究,将奇点理论与非交换几何、Hodge理论、形变理论和量子上同调等多个不同的数学理论紧密关联起来,并提供了诸多重要的研究课题。其中,Landau-Ginzburg模型之间的镜像对称问题是相关的林林总总的研究方向中最为重要也最有丰富的课题之一。但围绕这个课题的相关研究远未充
颗粒撞击液面是自然界和工业过程的常见现象,也是流体力学和颗粒动力学等学科的基础问题。本文对微米级颗粒撞击液面过程的颗粒和流体运动行为开展研究,揭示颗粒撞击液面的动力学和能量转化机制,为相关自然现象的理解和工业技术的开发提供理论支撑。首先,数值模拟研究了球形颗粒零速接触液面后的运动行为和漂浮条件。颗粒零速接触液面后的运动由邦德数、接触角和密度比控制。给出了颗粒撞击液面后能够漂浮的极限密度比,与实验结
近年来,由于在数据存储系统、通信系统和消费电子产品等方面的应用,具有很少重量的线性码,被专家学者们广泛地研究。文献[1]提出了线性码的一般构造,即由定义集来构造线性码。通过选择合适的定义集,可以生成许多已知的线性码。基于这种构造,目前已经构造出了许多线性码。在本文中,对奇素数p和正整数m≥2,我们通过选取定义集D={x∈F*pm:Tr(x2+x)=0}、D0={x∈Fpm:Tr(x2+x)∈C0(
有限元法(FEM)超收敛计算的重要性体现在两个层面。其一,超收敛计算可以在相对稀疏的有限元网格上面获得较高精度的解答;其二,超收敛解可以在有限元自适应分析当中用于构造后验误差的估计量,此即本文主要的研究目标。单元能量投影(EEP)法是有限元超收敛计算的有效方法,已经在许多一维和二维问题中取得成功,但在尝试处理三维问题的时候遇到严重的阻碍。本文重新研究EEP法处理多维问题的理论和算法,实现了三维问题
非凸二次约束二次规划(QCQP)是一个NP-hard的问题,若P NP,则不能在多项式时间内求其全局最优解。对于一般形式的非凸QCQP问题,一个角度是使用凸松弛结合分支定界法求全局最优解,另一个角度是将原问题写成一个等价的非负二次函数锥规划问题,并用可计算锥覆盖法求解。本文中,我们首先研究了一类具有隐凸性质的QCQP问题——扩展信赖域子问题(eTRS),我们补充了Burer等人在文献中关于该问题的
杂质是材料中非常重要的一类缺陷。它的存在,不仅会影响材料的电子输运、磁学等方面的性质,同时也会与位错、晶界等其他结构缺陷构成复合缺陷,从而显著的影响材料的强度、韧性等力学性质,甚至决定了材料的基态结构。研究杂质在不同体系中的作用,并寻找微观层面上的解释,除了具有重要的科学意义之外,也会有力的促进高性能的材料设计以及现有材料性能上的改善,因而同时具有很强的应用价值和指导意义。在本篇论文中,利用精确的
超图H=(V(H),E(H))是一般图的推广,其中V(H)是顶点集合,E(H)是边集合,满足E(H)(?)2V(H)是V(H)的一个非空子集族.如果对任意e ∈ E(H)满足|e|=k,则称H是k一致超图.超图H的匹配M是一个两两不交的边集合.如果M覆盖了超图的所有顶点,则称M为完美匹配.顶点u在超图H中的度记为deg(u).在组合学中,很多的开放问题可以转化为在一个超图中寻找一个完美匹配的问题,
Boris Dubrovin和Di Yang在其工作中提出猜想:满足局部Calabi-Yau条件的三次Hodge积分的生成函数为某可积方程簇的Tau函数,且此方程簇可视为半离散二维Toda方程簇的某种约化。在本文中,我们给出此方程簇的Lax形式的构造,称之为分数阶Volterra方程簇,并仿照研究二维Toda方程簇的相关方法,对分数阶Volterra方程簇的哈密顿结构、Tau结构、双线性方程、Vi
流固耦合问题在许多工程领域中具有很强的应用背景和需求。流固耦合问题常常涉及大变形和几何非线性,如液面的破碎及融合等,传统网格类数值方法存在网格畸变、追踪自由界面等方面的困难。弱可压物质点法(WCMPM)用于模拟流体时不存在网格畸变的问题,同时质点可以自动追踪液面的位置。但在中小变形情况下,物质点法精度不如有限元法。耦合有限元物质点法(CFEMP)利用有限元模拟固体区域,物质点模拟流体区域,而两者的