论文部分内容阅读
量子纠缠作为量子信息中不可或缺的核心资源一直是人们研究的热点之一。现如今,纠缠态已被广泛地应用在量子通信、量子计算和量子计量等领域。在量子信息处理的过程中,纠缠态需要存在一定时间以完成一个量子操作。然而,纠缠态在现实物理世界中是脆弱的,这是因为量子系统与周围环境的相互作用会破坏纠缠态导致退纠缠现象的发生。因此,如何在耗散环境中制备长生稳定的纠缠态成为了量子信息学中的主要问题之一。腔量子电动力学(腔QED)系统作为当下最具前景的实现量子硬件的物理体系之一,已被广泛地应用在量子信息领域中。特别地,腔QED系统作为一个高效的纠缠生成源,许多方法已经被提出用来在腔QED系统中制备不同形式的光子和原子的纠缠态。腔QED系统的耗散主要包括原子自发辐射和腔耗散,它们会严重地降低纠缠态的保真度。因此,在腔QED系统中制备高保真度的稳定纠缠态一直是人们努力的目标。本文主要的研究内容为在腔QED系统中利用不同方法制备高保真度稳定的原子纠缠态。以二原子纠缠态的制备为研究起点逐步地将研究内容深入到多原子纠缠态的制备,分别提出了制备二原子三维纠缠态、三原子GHZ态、三原子W态和多原子NOON态的方案。在非马尔可夫腔QED系统中,我们提出了一个利用纠缠交换制备二原子三维纠缠态的方案。在该方案中,三能级原子俘获在两个远距离的耗散腔中,原子的能级跃迁过程分别与一个腔模和一个经典驱动场耦合。原子与腔场之间的相互作用使得它们纠缠在一起,因而对腔中泄漏的光子执行贝尔测量能将原子与腔场之间的纠缠转换成原子之间的纠缠。由于环境的记忆效应,纠缠在非马尔可夫环境中表现出明显的振荡行为。通过适当地选择经典驱动场的失谐量和原子初态,原子能被制备在稳定的三维纠缠态上。在耗散腔QED系统中,我们提出了一个利用纠缠交换在非马尔可夫环境中制备三原子GHZ态的方案和一个利用李雅普诺夫控制制备三原子W态的方案。在制备三原子GHZ态的方案中,四能级原子俘获在三个远距离的腔中,原子的能级跃迁过程分别与左旋偏振和右旋偏振的腔模耦合。原子纠缠态通过测量腔中泄漏的光子产生。通过求解系统的含时薛定谔方程,得到了纠缠时间演化的解析解以及产生最大纠缠态的参数条件。当系统参数满足此条件时,原子被制备在三粒子GHZ态上;当系统参数不满足此条件时,纠缠在非马尔可夫环境中表现出明显的振荡行为。在制备三原子W态的方案中,三能级原子俘获在两个通过光纤连接的腔中,原子的能级跃迁过程分别与一个腔模和一个经典驱动场耦合。根据李雅普诺夫控制理论,设计了封闭系统和开放系统中的控制场形式。在封闭系统中,腔与光纤之间的耦合强度仅影响保真度到达最大值的时间而不影响保真度最大值的大小。因此,即使腔与光纤之间的耦合强度很小时,高保真度的三原子W态也能制备成功。在开放系统中,W态的保真度随原子、腔和光纤衰减率的增大而减小。当原子或腔和光纤的耗散很强时,引入量子测量和量子反馈技术能大大地提高W态的保真度。此外,还研究了李雅普诺夫控制在功率和强度的限制条件下的时间优化问题。在腔QED系统中,我们提出了利用原子集体激发和单光子测量两种不同方法制备多原子NOON态的方案。在利用原子集体激发制备NOON态的方案中,四能级原子俘获在两个通过光子跳跃作用耦合的腔中。原子NOON态通过一个依赖于原子集体激发的相位转换产生。NOON态的制备时间与NOON态中的原子数无关,因而增加NOON态中的原子数不会改变NOON态的制备时间。由于腔场在整个制备过程中始终处在真空态,因而该方案对腔场的耗散不敏感。原子激发态在大失谐条件下很难被布居使得该方案能有效地抵制原子自发辐射。在利用单光子测量制备NOON态的方案中,两个远距离的腔中分别俘获N个全同三能级原子,一束包含两个频率组分的弱光依次地入射并穿过两个腔后被探测器在特定的光子态上探测到。光与原子的相互作用使原子集体自旋态与对应频率组分的出射光子纠缠在一起,因而对出射光执行单光子测量会将原子投影到NOON态上。当存在耗散时,NOON态的保真度随原子数和腔衰减率的增大而减小。在原子数很大或腔耗散很强的情况下,利用二次执行NOON态制备步骤的方法来提高NOON态的保真度,实现了高保真度NOON态的制备。