基于正弦和窄脉冲电压驱动的大气压氦气介质阻挡放电均匀性的研究

来源 :华南理工大学 | 被引量 : 0次 | 上传用户:djjsl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
大气压介质阻挡放电(DBD)是产生冷等离子体的常见手段,在一定的参数范围内,放电稳定且均匀,具有较好的工业应用前景。然而,大气压DBD放电样貌对外施参数变化十分敏感,也易于出现放电不均匀现象,这不利于在放电均匀性要求较高的工业领域应用,而目前人们对于放电均匀性转化和运行机制的认识还十分有限。为进一步理解放电均匀性转化及演变机制,本文采用流体模型并结合实验对正弦和窄脉冲电源驱动下的放电均匀性展开研究,主要内容包括:(1)当放电在正弦电压驱动下,采用二维轴对称流体模型研究间隙宽度(dg)增大对大气压氦气平行平板型DBD放电径向均匀性的影响。通过分析电子密度,离子密度,电场强度,表面电荷,径向电场等物理量变化情况来研究dg对放电均匀性转变和演化趋势的影响,并探索物理机制;(2)当放电在窄脉冲电压驱动下,采用一维流体模型研究大气压氦气平行平板型DBD中电流多脉冲模式导致的电子密度轴向空间分层现象及产生机制;采用二维轴对称流体模型研究随外施电压幅值(Vam)改变对准均匀放电模式中径向空间的影响及演变机制;进行窄脉冲电压驱动下的放电实验来研究电流多脉冲现象和Vam改变对径向放电特性的影响。通过以上研究,本文得出了大气压氦气平行平板型DBD中的几点认识,主要包括:在正弦电源驱动下,随着dg增大,放电由准均匀放电演变为柱状放电,最终演变为准均匀放电,放电均匀性转变及演化因素主要包括电子级联、表面电荷、电子回流和径向电场;当放电在窄脉冲电源驱动下,电流多脉冲现象导致轴向空间出现电子密度分层,这与阴极位降区电场强度不断增大密切相关,而当Vam增加时,准均匀放电下径向放电面积增大,这与径向边缘区域空间电场增强和畸变有关。
其他文献
肿瘤免疫治疗虽取得了突破性进展,但对大多数肿瘤的临床响应率仍较低,这主要是因为肿瘤组织具有较强的免疫抑制性微环境。有效调控肿瘤微环境、逆转免疫抑制是提高肿瘤免疫治疗效果的有效策略,其中实现肿瘤相关巨噬细胞(TAMs)重极化和诱导肿瘤细胞发生免疫原性细胞死亡(ICD)是两类重要选择。药物载体技术是逆转肿瘤免疫抑制性微环境的重要手段,但现有载体材料往往面临药物负载量不高、肿瘤部位富集不足的问题。针对这
高密度、高集成度电子产品要求进一步减小电容器尺寸,提高电容器比电容及电学性能,因此,发展新型薄膜电容成为当下电容器集成技术的研究热点。然而电介质薄膜在厚度减小后,介电常数降低,并且容易出现孔洞,薄膜漏电流增大,各项性能指标恶化,因此单层薄膜电容器已不能满足上述应用需要,利用多层异质薄膜及其增强效应是一个可行的方案。本论文选择铁电、介电性能优异的PZT、BTO薄膜作为研究对象,通过周期结构和电极体系
随着互联网时代的快速发展,移动通信系统中无线设备的需求日益增长,以5G移动通信为代表的移动互联技术正迎来前所未有的高速发展。与目前已商用的5G Sub-6GHz频段的移动通信相比,5G毫米波频段有非常丰富的频谱资源,能够极大地增加无线信道容量和实现较高的数据传输速率,可以为移动通信、工业互联网提供更优质的移动网络接入,具有广阔的应用前景。基于上述背景,本文针对5G毫米波大规模阵列封装天线的设计和高
虽然目前基于深度学习的图像分类算法在大规模数据上取得优异的成绩,但是目前主流的深度学习算法主要基于批量训练,而批量训练算法难以应对动态变化的数据流,因为其在面对新到来的数据时,需要将历史数据与新数据混合作为一个整体对模型进行重新训练,导致模型训练周期长、计算资源和存储空间消耗大。因此,增量学习逐渐成为了研究人员关注的焦点。增量学习的目标是让模型能够像人类一样进行渐进式学习,不仅可以连续不断地处理新
数字经济时代,数据已成为重要生产要素,商业银行作为数据密集型机构,其发展离不开数据的强有力支撑。本文概述替代数据的内涵与相关管理要求,分析当前商业银行替代数据应用的现状,提出商业银行进一步加强数据资产管理的对策建议。
雷暴冲击风是一种由强烈的下沉气流引起的具有非平稳性、突发性和强破坏性的沿着地面或近地面扩散的强风,对桥梁的影响罕有报道,我国现行《公路桥梁抗风设计规范》(JTG/T3360-01-2018)中也未体现雷暴冲击风等局部强风场作用。本文以某大跨斜拉桥的最大单悬臂施工状态为工程背景,采用数值方法对比分析了雷暴冲击风和常态风作用下斜拉桥单悬臂状态风振响应特性,并基于Fluent软件对TLD水箱内部水体的动
液压振动锤作为桩基础施工的重要桩工机械之一,其最大的特点是沉桩效率高、适用性强和噪声污染小。但随着现代建筑工业的发展,传统液压振动锤在沉桩工艺和控制性能上也暴露出许多问题,国内振动锤设计理论落后,液压控制技术水平较低,功能普遍单一。因此,本文从液压振动锤的理论机理研究出发,对其结构和液压控制系统进行优化设计,为桩工机械行业发展提供新的研究方向。本文首先探究液压振动锤振动沉桩过程机理,研究沉桩原理,
由于可再生能源产业的快速发展,传统的发电机组需要通过频繁开关来适应电力供需的变化。同时,燃煤发电机组需要在高温高压环境中运行以提高化石能源的利用率。在发电厂频繁启停,高温高压的环境下,高铬钢构件承受着复杂的载荷,面临着蠕变、疲劳、延性、氧化腐蚀等多种类型的损伤。不同类型的损伤可能会同时出现并相互作用,对构件结构的完整性和运行的可靠性造成极大威胁。为保证构件的安全运行,必须深入研究高铬钢在高温复杂载
在中国大规模新能源接入电力系统的背景下,风电和光电功率的不确定性和波动性对电力系统调峰和调频产生了显著影响,使风电、光伏并网消纳成为新能源可持续发展的瓶颈。要解决新能源并网消纳问题,一方面必须在系统中配置适当的备用资源,平抑风电、光伏波动对系统的不利影响;另一方面,从新能源跨区消纳的角度建立全局优化调度模型,通过跨省区互联电网的备用资源协同调度和时空互补,在更大的区域范围内消纳清洁能源。本文以高比
随着航空业的快速发展,航空运输安全保障的精准度要求也随之提升,航空管制中心承担着空中交通管制的重要职能,是航空安全与发展至关重要的基础建设环节。但由于航空管制中心工艺设计的专业性,目前对于此类建筑的研究主要倾向于工艺设备的技术统筹和空中交通管制员抗压能力的自我素质提升,尚未关注建筑作为使用者的行为载体空间所应具备的设计协同意义。本文拟从空中交通管制员的行为特征为研究切入,分析行为需求导向下建筑设计