变分问题的集中现象

来源 :厦门大学 | 被引量 : 0次 | 上传用户:intaaag
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
第一章介绍了若干著名引理,并通过这些引理证明了一般化的Sobolev不等式的局部化形式和一般化的集中紧致定理.第二章我们得出,当ε→0时,上述变分问题的几乎极值序列收敛到某-个点,几乎极值序列接近收敛点的局部性质只与F有关.并且当F在0点和无穷远处满足某一增长条件,那么在IRN上的几乎极值序列收敛到一极值函数。
其他文献
本文主要研究了算子代数上映射的可加性问题,涉及标准Jordan算子代数和三角代数上的Jordan初等映射和Jordan三元初等映射,全文共分两章。 第一章主要研究了标准Jordan算子代
Boudreault,et al.(2006)中曾经提过一个索赔额与索赔间隔相依的风险模型,本文将对其进行推广,将这种相依关系推广为更一般的Copula相依,并运用了边界分红策略,得到了如下结
在当今的工业化世界中,产品销售的竞争对于国家产业的生存是至关重要的。如果想要行业稳定发展,不断成长和扩大,并且能够与国内外同行竞争,就要从提高产品质量方面入手。在人类生
本文首先利用临界点理论研究了具有一般超二次位势的四阶广义Fisher-Kolmogorov方程和Swift-Hohenberg方程的周期解.为此我们先考虑边值问题若我们得到了该边值问题的解u=u(x
广义半无限优化问题(Generalized Semi-Infinite Programming,简称GSIP)是一类包含有限多个变量无穷多个约束的复杂非线性优化问题,其约束集相关于决策变量,在动力系统控制等
函数空间上的算子理论的核心问题是用算子符号的分析,几何等性质去描述算子的性质,由此搭建了复分析与算子理论之间的桥梁,是泛函分析中的活跃领域.由于Toeplitz算子,Hankel算子
二十世纪九十年代,人们发现一些高效的二元非线性码可以看作是Z4上线性码在Gray映射下的二元象,有限环上的编码理论获得重要突破。自此,有限环上的编码理论成为研究的热点。