面向计量标准量子随机数产生的量子噪声功率谱校准

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:txiujyhbhoo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随机数从根本上决定着信息系统的安全,在全球通信安全和金融安全领域起着至关重要的作用。量子随机数的产生基于量子物理的不确定性本质,即量子的内禀随机性,是安全性信息论可证明的真随机数产生方案。在各类量子随机数产生方案中,基于连续变量量子态分量起伏不确定提取随机数的方案因其熵源及测量模型明确、探测系统高带宽、鲁棒性等优势尤具应用前景。对于实际的量子随机数产生方案,系统量子熵含量的严格评估、量子随机数的提取和边信息的有效祛除是所产生量子随机数的安全性的保障。连续变量量子随机数产生方案中,量子平衡零拍探测(homodyne)系统在抑制共模经典噪声的同时基于其本底增益及电子学增益将连续变量量子态的分量起伏噪声放大到宏观水平,进而离散量化产生量子随机数。然而实际的连续变量量子随机数产生系统中,激光模式噪声、探测系统及模数转换的非理想因素都将会给连续变量量子随机数引入边信息,这是连续变量量子随机数产生过程中不可避免的。以往基于连续变量量子态分量起伏不确定性提取量子随机数的方案中,对homodyne探测及光电流信号量化做半理想化假设,而只通过线性增强本底光确定所测为量子态分量噪声。我们的研究面向计量标准的连续变量量子随机数产生,具体工作为连续变量量子随机数产生过程中量子探测噪声功率功率谱的严格校准,这里不对随机数产生各环节做任何理想化假设,而通过测量系统传递函数的方法,在频域校准量子态探测的噪声功率谱。传递函数包含了本底激光强度噪声、分束器非理想平衡、有限CMRR、二极管量子效率、ADC输入输出耦合等系统非理想因素对连续变量量子随机数产生的过量噪声影响,主要完成的工作有:第一,实验研究了真空基连续变量量子随机数的产生与提取、homodyne探测增益对系统量子噪声熵含量的影响、随机变量量化中电子学噪声造成的边信息对量子熵含量的影响,建立了量子随机数产生系统最小熵的表征量化模型。第二,利用拍频法,以拍频信号探测homodyne带宽内一个频率节点的传递函数,通过采集和处理量子随机数产生系统最终输出的时域信号,基于平均周期图法重构拍频节点的功率谱,确定了平均周期图法的最佳窗函数和分段规则。第三,通过控制探针光频率,扫描homodyne探测带宽内各频率节点,以时序信号分别重构出各频率处的系统输入输出函数,与频谱仪探测homodyne系统输出信号功率谱进行对比与校准,初步实现了连续变量量子随机数产生过程中量子探测噪声功率功率谱的严格校准。该项工作面向连续变量量子随机数的安全性计量标准评估,基于熵源测量功率谱的严格校准,进而可以以测量不确定性给出安全参数距离,从而在计量标准约束的前提下去寻求高熵高速的量子随机数提取方案。基于熵源功率谱过量噪声的严格校准,为连续变量量子随机数安全性的计量标准评估奠定了基础。
其他文献
光电子器件是光通信网络的基础,光学谐振腔作为典型光学结构,广泛应用于光学滤波器、缓存器、光开关等器件中。品质因子Q值是衡量光学谐振腔性能的一个重要参数,代表谐振腔储存光能量的能力,追求更高的Q值是谐振腔研究的永恒主题之一。除了性能之外,光学谐振腔样式众多,各有其结构特点,所以针对不同应用场景,探索更加切合实际需求的光学谐振腔,不仅能拓宽光学谐振腔的应用领域,也能发挥不同谐振腔各自的优势特点。基于共
脑老化是一个复杂的、不可避免的生物学过程,对大脑成熟和衰老生长曲线的研究可以探索人脑老化机制,有助于对老年性认知疾病的早期干预。阿尔茨海默症(Alzheimer’s Disease,AD)是一种起病隐匿的且与认知能力相关的老年性神经退行疾病,从早期轻度认知损害(Early Mild Cognitive Impairment,EMCI)到晚期轻度认知损害(Later Mild Cognitive I
进入21世纪以来,基于位置信息的服务迅速发展,全球卫星导航系统(Global Navigation Satellite System,GNSS)在人们的生活中变得越来越无可替代。全球卫星导航系统定位方式主要有标准单点定位、标准差分定位、精密单点定位(Precise Point Positioning,PPP)和载波差分定位(Real-time kinematic,RTK)四种。其中,精密单点定位因
近几年来,随着科学技术的磅礴发展,出现了数据爆炸的现象,数据如何进行存储也就成为了比较重要的研究课题。为了存储更多的数据,并且为用户减少存储开销,于是云环境存储应运而生,越来越多的用户选择将数据存储在云环境中,但是云存储的出现也面临着数据不安全的问题,需要用户对数据加密处理后再上传到云环境中。云存储指的是数据所有者将数据存放在网络中的多台虚拟服务器中,它们由第三方服务商来管理,而不是本地计算机中,
入侵探测技术被广泛用于区域防护以保障人身和公共财产安全。现有的入侵探测技术包括激光雷达、光学/热红外摄像机、电子围栏、振动电缆传感器、光纤传感器和入侵探测雷达。除入侵探测雷达外,其它入侵探测技术普遍存在隐蔽性差、易受环境温度、可见度以及嘈杂振动影响的缺陷。入侵探测雷达采用泄漏电缆或者常规天线发射探测信号和接收回波信号,从而构建人眼不见的电磁防护区域,弥补了上述缺陷。但是受限于发射信号的固有特性,入
激光雷达作为一种主动式扫描探测技术,可以快速获取周边环境的信息。随着激光雷达在机器人、无人驾驶等领域的广泛应用,国内外激光雷达市场迅速发展。鉴于目前市场上成熟的激光雷达产品存在价格昂贵、国外技术垄断和控制算法不开源等问题,本课题开展了激光雷达的设计研究工作。本文以移动机器人室内环境感知为背景,结合车载环境和实际应用需求,使用课题组自行研制的激光测距模块,设计了一种二维激光雷达扫描系统。设计的二维激
基于超宽带雷达的非接触式生命体征监测系统是将雷达技术应用于生物监测领域,其目的是通过非接触方式获取目标人体的呼吸和心跳频率。在新冠肺炎全球蔓延的大背景下,医院各方都在寻求更为有效与安全的监测手段,而基于超宽带雷达的非接触式生命体征监测系统,在保护病人生命安全的同时,也为前线医疗人员提供安全保障,集合了高效、安全的监测特征,不仅应用于防疫医疗监测,也适用于慢性病患者或老人居家呼吸心跳等健康体征监测,
语音识别技术在人工智能的推动下再一次迎来发展的热潮。人们迫切的希望在实际的生活当中,也能与智能机器有更好的交流,让机器听懂人们的语言,按照人们发布的指令正确的完成应答操作。但当下,语音识别技术走出实验室进入生活仍存在一些技术性难题。在没有噪声或者噪声很小的环境中,语音识别系统识别效果良好,会有较高的识别率;但当在背景噪声很大,或者识别环境更复杂的情况下,识别系统的性能就不如实验室安静环境下理想。所
语音增强是指从含噪语音中去除噪声,以提高语音质量和可懂度。目前已经有包括卡尔曼滤波在内的多种语音增强方法,其中卡尔曼滤波器的增强性能很大程度上取决于参数的估计精度,但是传统卡尔曼滤波方法中对于参数的估计存在缺陷,这会直接影响到卡尔曼滤波器的增强性能。此外由于早前的研究者认为相位对于语音质量的提高贡献有限,因此多数语音增强方法在对含噪语音进行增强时仅对幅度谱进行处理而相位则使用含噪语音相位直接代替。
混沌信号具有类噪声、高带宽、随机性强等特点,在加密通信、随机数发生器、车载激光雷达等领域有重要应用价值。特别是在激光雷达领域,混沌激光的功率决定了雷达的有效探测距离。因此,实现高功率的混沌激光产生是车载混沌激光雷达发展的必然趋势。1550nm波长处于激光的近红外波段,相比于传统激光雷达使用的800~1000nm波段激光信号,1550nm激光在雾霾、沙尘等低能见度天气下穿透能力更强,对人眼也更安全。