磁性颗粒复合介质的电磁特性

来源 :苏州大学 | 被引量 : 0次 | 上传用户:liongliong438
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
颗粒复合介质是指颗粒状的一种或几种材料无规分布在某种基质中而形成的新型复合材料。由不同组分的材料形成颗粒复合介质后,可具有与组分物差异很大的性质,展现出丰富的物理现象。由于这种颗粒复合介质在实验上比较容易制备,对实际的应用提供了广阔的前景。理论上对这种颗粒复合介质的研究成为理论物理研究的一个热门课题,许多理论与实验学者都对这些颗粒复合介质产生了浓厚的兴趣。 我们所讨论的磁性颗粒复合介质是指由金属磁性颗粒无规分散在非磁性的绝缘基质中形成的一种复合材料,这种颗粒复合介质是本文研究的重点对象,它们无规地与基质不相溶地分散在非磁绝缘基质中。本文主要以(dynamic EMA)的方法和有效媒质理论Bruggeman方程来研究了金属磁性颗粒体系中的磁谱和非磁金属颗粒在磁性颗粒体系中的磁谱及金属磁性纳米颗粒复合材料的左手特性。 对于一个由具有单轴各向异性的单畴铁磁颗粒浸在非磁绝缘介质中的颗粒体系,假设所有的颗粒大小均相同,我们可以推导出单个单畴颗粒的磁化率张量,然后通过坐标变换来推导出整个体系有效磁化率张量。考虑到颗粒尺寸的影响,以及介电与磁之间相互影响,我们使用了电磁耦合的有效媒质理论(dynamic:EMA.)研究了金属磁性颗粒与非磁颗粒无规混合体系中的磁谱和介电谱以及非磁金属颗粒与在磁性颗粒无规混合体系中的磁谱。计算结果表明,非磁金属颗粒在磁性颗粒体系中金属性颗粒可以激发磁性颗粒在高频共振等其它性质。 当颗粒的半径大小在纳米尺度范围内时,由于电磁耦合的影响很小,这时可以忽略颗粒尺寸的影响,就可以采用有效媒质理论Bruggeman方程来计算金属磁性颗粒复合体系的有效介电常数ε<,e>和有效磁导率μ<,e>与频率之间的变化关系,进一步可以求出该金属磁性颗粒体系的平均坡印廷矢量S<,ω>和波矢k与频率之间的变化关系,依据电磁场的知识可知,由于在一段频率范围内S<,ω>·Re(k)<0,因此相速度与群速度的方向相反,能流与波矢的方向也是相反的,因而此金属磁性颗粒复合材料在这一频率范围内呈现出左手特性。我们还发现,当金属磁性颗粒的磁阻尼系数较小时,体系在磁共振频率段附近出现双负的有效磁导率和介电常数,当磁阻尼系数较大时,磁共振现象减弱,有效磁导率不出现负值,从而导致体系在整个频率段内都不会出现左手特性。
其他文献
纳米结构由于具有独特的特性而始终被人们广泛关注和研究。本论文主要力图通过对一些特殊纳米材料和结构的生长组装控制与特性研究,探索并实现纳米材料与结构在电子与生物传感
近几十年来,关于光孤子在光信息处理和光通信领域中的应用已有大量的理论和实验研究。到目前为止,大多数光孤子都在传统被动光学介质,比如玻璃光纤中产生,其中为了避免不可控的光
Mg 合金是被公认为当今最有前途的汽车轻量化材料,被誉为 21 世纪的“绿色”材料,具有密度低、比强度和比刚度高、原料丰富等优点,AZ91Mg 合金就是其中应用最为广泛的一种合金。
ZnO薄膜是一种直接宽带隙半导体材料,具有多种用途,可广泛的应用于太阳能电池、压电薄膜、光电器件、气敏器件和紫外探测器等方面。其特性可通过适当的掺杂来调剂。尤其是近年来对ZnO基稀磁半导体材料的研究越来越为人们所重视,为了研究Fe掺杂对ZnO薄膜光学特性的影响,本文采用射频磁控溅射法分别在Si(111)及Al2O3衬底上制备了Fe掺杂ZnO薄膜,分别对它们的结构和光学性质进行了研究。一.室温下,在