绝对式光栅尺可靠性研究与误差分析

来源 :中国科学院大学(中国科学院长春光学精密机械与物理研究所) | 被引量 : 0次 | 上传用户:superzf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高档数控机床被称为“大国重器”,作为重器之眼的绝对式光栅尺是决定数控机床精度的重要因素之一,所以它的可靠性与精度是数控机床厂家的重点关注对象。国产绝对式光栅尺起步较晚,如何提高国产绝对式光栅尺的可靠性与精度,达到国外产品的性能指标是国产绝对式光栅尺急需解决的问题。本文对国产绝对式光栅尺的可靠性与误差进行了相关研究,主要研究了绝对式光栅尺的关键技术、绝对式光栅尺的可靠性、绝对式光栅尺单周期内的位置误差和绝对式光栅尺全量程内的位置误差,具体内容包括以下5个方面:(1)研究了绝对式光栅尺的单轨绝对位置编码技术、莫尔条纹计量技术、单场扫描技术、专用集成光电器件技术和绝对式光栅尺的机械结构。(2)分析了绝对式光栅尺的主要故障模式及其可能产生的传递影响。研制了绝对式光栅尺的可靠性试验设备来考察绝对式光栅尺的可靠性。对绝对式光栅尺进行可靠性设计,包括尺壳与支撑件一体化等六个方面,以此来提高绝对式光栅尺的可靠性。对绝对式光栅尺进行环境试验,评估绝对式光栅尺的抗干扰能力和环境适应性。(3)研究了莫尔条纹信号质量与绝对式光栅尺单周期内位置误差的关系,分析了莫尔条纹信号的直流电平、等幅性、正交性、正弦性对单周期内位置误差的影响,结果表明:当四种误差源的偏差幅度一致时,正交性偏差对光栅尺单周期内位置误差影响最大,其次为直流电平偏差和正弦性偏差,等幅性偏差的影响最小,当各项误差源的偏差幅度低于20%时,可以用各项误差源独立引起的单周期内位置误差曲线叠加后的曲线近似表示单周期内位置误差。分析了影响绝对式光栅尺单周期内位置误差的因素。创新性地提出了三种减小绝对式光栅尺单周期内位置误差的方法:通过自制装调设备提高绝对式光栅尺的装调精度,ASIC器件与指示光栅的装调偏差小于1μm,指示光栅与标尺光栅的转角偏差小于0.05°;提出一种指示光栅的移相消谐波方法,通过在指示光栅上设计不同相位的明暗条纹组来降低莫尔条纹信号中的高次谐波含量,3次谐波占比由原来的2.77%下降到0.04%;提出一种基于光闸莫尔条纹方案的单场扫描方法,通过改变指示光栅增量窗口的排列方式来减小线性误差对正、余弦信号相位的影响,进而减小单周期内位置误差。(4)采用理论与试验相结合的方法研究了光栅副空间位置变化对单周期内位置误差的影响,结果表明:同样的角度,指示光栅绕z轴旋转后,信号幅值最小,单周期内最大位置误差最大;指示光栅绕x轴旋转后,信号幅值最大,单周期内最大位置误差最小。(5)研究了绝对式光栅尺全量程内位置误差的组成,主要包括标尺光栅误差、安装测量误差、温度误差和振动误差,研究每种误差的成因及减小措施。创新性地提出了三种减小绝对式光栅尺全量程内位置误差的方法:直接刻划1.5米母光栅减小长光栅的拼接误差;采用改进的母光栅拼接工艺提高拼接质量,拼接误差小于1μm;采用刚柔结合的尺壳固定方式减小固定孔对光栅尺温度特性的影响,既保证了光栅尺在数控机床上的固定刚性,又保证了光栅尺具有确定的和可重复的温度特性,方便数控机床厂家对光栅尺进行温度误差补偿。在试验室内对绝对式光栅尺进行基于数控系统的全量程内位置误差闭环测量,结果表明:激光干涉仪的反射镜放置在三个不同的位置时,绝对式光栅尺的重复定位精度均可以达到2μm。在同一台数控机床上对国产绝对式光栅尺与海德汉绝对式光栅尺进行重复定位精度、补偿后的定位精度、未补偿时的定位精度这几个指标的对比,结果表明:国产绝对式光栅尺三轴的重复定位精度都可以达到2.5μm,补偿后的定位精度都可以达到4μm,与海德汉光栅尺已经非常接近,完全可以满足数控机床厂家的使用需求。本文研究了提高绝对式光栅尺可靠性与精度的方法,对加快绝对式光栅尺的国产化进程具有重要的意义。
其他文献
ZnO材料近年来成为半导体光电器件领域的研究热点。当传统的ZnO薄膜受限于p型掺杂的问题而遇到瓶颈时,微纳器件由于其灵活多变的器件结构而受到越来越多的关注。近年来,单根ZnO:Ga微米线在电致发光、电泵浦激光、异质结发光器件等方面取得很多突破,而其在光电探测、电致发光中心波长精确调节等方面仍面临着一些挑战。同时,金属表面等离激元无辐射衰减诱导产生的热电子被广泛用于提升光伏器件例如光电探测器件和太阳
空间目标主要是指离地球表面100km以外空间(外层空间)的所有在轨工作航天器和空间碎片。随着航天发射活动的日益频繁,空间目标种类和数量急剧增加,空间环境变得更为复杂,因此对空间目标进行实时广域监视显得尤为重要。阵列相机早期主要应用于全景成像领域,近年来开始在空间目标探测领域中得到应用,其广域探测能力可实时提供多目标丰富的运动轨迹和光度变化信息,且建设周期较短,研制成本较低,与传统的大口径空间目标光
作为一种新型大气风场探测技术——紫外激光雷达技术近年来受到广泛关注。与传统红外测风激光雷达技术相比,紫外激光雷达基于空气分子的瑞利散射,在气溶胶稀少环境下可实现近距离风场测量。其具有保密性高,全方位性好、抗干扰能力强等特点,是一种在要求无线电静默条件下进行探测的有效方法。目前的机载紫外测风激光雷达的参数设置主要来自实验环境的具体测试,缺少系统性的理论研究。而现有的紫外激光大气传输模型计算量大,计算
太阳是地球空间环境变化的源头,是进行天文观测的首要目标,太阳X射线和极紫外波段观测的图像数据对研究太阳内部机理和监测地球空间环境有重要意义。随着空间天文的发展和太阳X射线-极紫外波段成像仪器水平的提高,需要定量化的图像数据,也需要有效的平场定标方法来保证太阳X射线和极紫外波段成像仪器的数据精度。本论文对基于KLL算法的X射线-极紫外波段的平场定标方法展开研究,解决了该波段无大面积均匀照明光源的问题
太阳是地球气候系统的能量之源。太阳总辐照度(Total Solar Irradiance)表征了太阳对地球气候系统输入的电磁辐射能量大小。为了研究气候变化的根本原因,对于太阳总辐照度的精确连续观测是必须的。基于电替代原理的太阳绝对辐射计能够不依靠其他辐射计量标准,对于辐射量值直接进行标定,目前已经成为在轨太阳总辐照度的标准计量仪器。目前现有的星载太阳绝对辐射计包括比利时的DIARAD、美国的TIM
自适应光学是目前解决大气湍流干扰、恢复地基望远镜光学衍射极限分辨率成像的不可或缺的技术。但是系统中的核心——变形镜波前校正器受限于机械制作工艺其驱动单元数很难超过200,一旦超过则成本非线性剧增,使2米以上大口径望远镜在可见光波段的波前自适应校正成像成为很棘手的问题。近年出现的电子学元件液晶波前校正器以高密度像素为驱动单元,很容易就能达到千单元变形镜的波前校正密度,且成本比200单元变形镜的成本还
图像在形成、拍摄、处理等过程中,成像系统、大气环境、人为操作和处理方法不完善会造成图像细节丢失和分辨率下降,制约图像信息的传递和解析。尽管通过改善机械装置、增设光学器件等硬件可以消除部分模糊。但对于有些因素来说,它们产生的图像质量退化问题,无论是从硬件上还是环境上,都很难做到完全规避,例如光学系统的衍射极限、大气湍流的扰动以及大气散射。因而,从数字图像处理的角度对降质图像进行恢复,无论是在理论研究
随着固态照明技术的发展大量荧光材料被研究开发,目前为止发现的荧光材料根据其晶体结构和化学成分可以大体被分为石榴石结构材料、氟化物材料、氮化物材料以及氧化物材料等类别,其中氮化物材料由于在组成和结构上的复杂多样,以及独特的局部配位环境等,使掺杂在其中的稀土离子具有丰富的发光颜色,可调制的发射光谱,高的转换效率以及高的稳定性等优点引起了广泛关注。本论文选取氮化物Y3-xLuxSi6N11(x=0-3)
对我国能源领域低碳转型的紧迫性和国外能源转型方式进行了分析,认为我国应从自身条件出发选择能源转型方向,而不是"整齐划一"地发展可再生能源。对2021年碳中和、碳达峰"一波三曲"的特征进行了简要回顾,认为能耗"双控"考核要强调科学性,不能因为能耗控制限制我国的发展;并且认为2021年12月召开的中央经济工作会议将"先立后破"具体化,对煤炭等传统能源的退出与可再生能源发展、能耗"双控"考核给出了严格的
近年来,化学和生物物质检测在环境保护、疾病监测和药物发现等领域的重要性愈发凸显,基于锥形光纤耦合光学微腔产生的回音壁模式(Whispering Gallery Mode,WGM)具有超高的品质因数和较小的模式体积,使得WGM光学微腔耦合系统可对环境中的微小变化进行检测,并获得比传统微纳光学传感器更高的灵敏度和更低的探测极限,从而受到广泛的关注。此外,与WGM微腔结合的法诺(Fano)共振效应在生化