【摘 要】
:
近年来,对Ti/Al3Ti叠层复合材料的研究逐渐成为热点,该材料由于其低密度、高模量及高比强度等优点,被广泛应用于装甲防护领域,因此对Ti/Al3Ti叠层复合材料的结构进行优化十分必要,本文基于LS-DYNA软件对不同条件下Ti/Al3Ti叠层复合材料的抗侵彻性能进行研究,以获得抗弹性能更好的叠层材料。首先采用LS-DYNA软件对子弹侵彻靶板的有限元模型进行验证,从子弹的侵彻深度及靶板的失效及变形
论文部分内容阅读
近年来,对Ti/Al3Ti叠层复合材料的研究逐渐成为热点,该材料由于其低密度、高模量及高比强度等优点,被广泛应用于装甲防护领域,因此对Ti/Al3Ti叠层复合材料的结构进行优化十分必要,本文基于LS-DYNA软件对不同条件下Ti/Al3Ti叠层复合材料的抗侵彻性能进行研究,以获得抗弹性能更好的叠层材料。首先采用LS-DYNA软件对子弹侵彻靶板的有限元模型进行验证,从子弹的侵彻深度及靶板的失效及变形等方面进行对比,发现模拟结果与文献中的试验结果取得了较好的一致性。在此基础上,对Ti/Al3Ti叠层复合材料中Ti的体积分数、层厚梯度及层数进行调整,发现Ti体积分数为27.7%时,叠层材料的抗侵彻性能最好。在Ti体积分数保持最优的情况下,随着厚度梯度及层数的逐渐增加,材料的抗侵彻性能逐渐提升。通过采用不同形状的子弹侵彻叠层材料发现,形状对叠层材料产生的破坏形式不同,平头弹侵彻靶板时,靶板的失效形式主要为剪切冲塞破坏,尖卵形子弹对靶板的破坏形式主要为延性扩孔破坏,而半球头弹对靶板的破坏形式为剪切冲塞破坏和延性扩孔破坏相结合。三种形状的子弹中,尖卵形子弹的侵彻能力最强,平头弹和半球头弹的侵彻能力相差不大。接着基于弹道极限速度理论分析背板对抗侵彻性能的影响。分别对厚度比、背板材料(Q235,2024铝合金,AZ31镁合金)及背板面密度对复合靶板抗弹性能的影响进行了研究。结果表明:厚度比对抗侵彻性能有一定的影响,当Ti/Al3Ti叠层复合材料与Q235钢背板的厚度比为2:1时抗侵彻性能更好。面密度保持相同的情况下,Ti/Al3Ti叠层复合材料与AZ31镁合金构成复合靶板的抗侵彻性能高于与Q235钢和2024铝合金构成的复合靶板。随着背板面密度的增大,复合靶板弹道极限速度增大的趋势逐渐减慢,即增大背板面密度对抗侵彻性能的提升效率慢慢降低。当子弹初速度超过弹道极限速度时,随着背板面密度的不断减小,子弹的剩余速度逐渐接近,表明当面密度小于一定值时,背板材料的改变对复合靶板的抗侵彻性能影响不大。
其他文献
与纯铝或铝合金相比,颗粒增强铝基复合材料(PRAMCs)具有强度高、比模量高、耐磨和耐高温等优良的综合性能,同时也具有良好的可设计性,已经在军用和民用领域得到广泛应用。B4Cp/Al复合材料作为PRAMCs的一种,以其更低的密度和中子屏蔽能力越来越受到研究人员的关注。在乏燃料的运输过程中,由于冲击或者颠簸作用,可使B4Cp/Al复合材料受到外力。因此,对于B4Cp/Al复合材料的力学性能与失效行为
金属激光增材制造技术是以快速成形原理为指导,通过采用激光逐层熔化金属粉末或丝材堆积成形的加工方式,从而直接制造出任意复杂形状零件的一种先进制造技术。目前受到了全世界范围的密切关注,是先进制造领域的前沿方向之一,在设备制造,工艺调控和材料研发等方面均取得了突破性进展。其中材料研发作为基础研究起着至关重要的作用,但目前还比较薄弱,专用的打印材料问题仍然是迫切需要解决的问题,专用打印材料的种类还比较匮乏
全面建成小康社会后,贫困性质将发生一定的变化,相应的贫困评估标准也将随之改变。贫困地区的产生是多种因素共同作用的结果,有其产生的历史原因和特定的社会背景以及发生、发展的规律,文章根据新时期区域贫困特征,构建区域多维贫困测度指标体系,利用层次分析法进行综合评价,识别出2020年以后仍需国家政策倾斜的区域。
与传统晶体材料不同,非晶合金因其短程有序、长程无序的内部结构,被看作是一种极具潜力的材料。其中,铁基非晶合金因具有高的强硬度和弹性模量、良好的耐腐蚀能力、优秀的软磁性能以及较强的价格优势而倍受关注。但是,现阶段的铁基非晶合金条带主要被应用于电力领域,临界尺寸、制备工艺和室温脆性等因素限制了其力学性能的发挥。考虑到铁基非晶条带的高强硬度和多元素特性,将其引入叠层结构,作为强性层或增强相发挥作用,有望
随着纳米工业的迅猛发展,石墨烯和碳纳米管等新型材料得到广泛应用,尤其是在微纳米机电系统(NEMS)中,纳米构件作为NEMS中的重要组件,以其在电磁、热电、力学等方面优异的性能,发挥着关键性的作用。鉴于纳米结构巨大的应用潜能,研究其力学性能和动力学机理具有重要的科学意义和应用价值。由于与宏观尺度下材料特性表征有所不同,在纳米尺度下传统的理论和研究方法不再适用。因此,本文基于考虑了纳米尺度效应的Eri
2219铝合金由于具有强度高、密度小等特性,已经成为航空航天领域重要的轻量化结构优选材料之一,被人们称为“航空铝”。目前,2219铝合金在航空航天领域的的燃料箱、运载火箭舱体、飞机壁板、高铁车身等薄壁构件中得到了广泛应用,其中对中大型铝合金结构件的高质量连接技术需求迫切,而在当前主流的连接技术中,焊接作为一种重要的连接技术,具有能够实现连接处冶金结合、适用的连接材料种类限制小等优势。对于2219铝
联苯型邻苯二甲腈(BPh)作为最具代表性的一类邻苯二甲腈树脂,由于其优异的耐热性能和力学性能,已作为先进树脂基复合材料而被广泛应用于航空航天、核能、高温工业等领域。然而,与普通热固性树脂一样,交联密度过高使BPh树脂固化后脆性大,抗冲击性能差,导致其复合材料应用受限。针对上述问题,本课题采用含杂萘联苯结构的芳醚腈类树脂(PPEN、PPENK)以及氨基封端PPENK(PPENK-DA)增韧改性联苯型
致病菌的传播严重威胁人们生命健康安全和财产安全,尤其2019年底爆发的新型冠状病毒再次引发全世界对公共卫生安全事件的关注。因此,研发能够有效控制致病菌快速传播的高效抗菌剂至关重要。氯胺化合物是抗菌领域研究热点之一,自身具有高效、广谱和抗菌功能可再生等特点,但其亲水性较差,不利于氯胺化合物触杀灭菌进程,这也是目前氯胺被广泛固载于亲水材料表面制备抗菌材料的一个原因。为此,本组将季铵盐和吡啶盐等低分子鎓
天然气水合物是一种非化学计量的晶体化合物,由水分子间氢键网络构成的笼型结构包络客体分子而形成;作为一种新型能源,具有清洁无污染、能量密度高、已经探明储量丰富等优势,将成为全球能源体系的重要组成部分。随着对水合物研究的深入,所产生的水合物法气体储运、气体捕集和筛分等技术也逐步展示出规模化的巨大潜在价值。然而,水合物形成过程中存在成核困难、反应速率缓慢、水转化率低等动力学瓶颈,以及更容易在高压低温条件
电力电子行业的发展引起的日益严重的电磁污染问题和军事隐身技术的需求都对电磁波吸收材料提出了更高的要求,因此亟待开发性能优异的电磁波吸收材料。Fe-Si-B-Nb-Cu系非晶、纳米晶合金是新型软磁材料,具有高磁导率,低矫顽力、低铁损等优异的软磁性能,因而有望成为性能优异的电磁波吸收材料。本文设计了成分为Fe73.2Si16.2B6.6Nb3Cu1的非晶纳米晶合金,并分别制得了非晶、纳米晶合金粉体以及