论文部分内容阅读
铬鞣法是目前制革工业中最成熟的鞣革方法之一,传统铬鞣法可赋予皮革良好的性能,但由于铬鞣剂的吸收率不高,造成了大量的资源浪费与环境污染,制约了皮革行业的可持续发展。本研究将纳米技术引入传统制革鞣制用化学品的开发中,制备了系列两性乙烯基类聚合物/无机纳米复合鞣剂,通过对皮胶原进行改性,提高了其对铬鞣剂的吸收,减少铬鞣产生的污染,提高了胶原的耐湿热稳定性,同时可赋予皮革优异的性能,增加了革制品的附加值。本研究首先以二烯丙基二甲基氯化铵为阳离子单体,通过单因素试验法分别优化了两性乙烯基类聚合物聚二烯丙基二甲基氯化铵-丙烯酸(PDMDAAC-AA)和聚二烯丙基二甲基氯化铵-丙烯酸-丙烯酰胺-丙烯酸羟乙酯(PDMDAAC-AA-AM-HEA)的制备工艺。采用透射电子显微镜(TEM)研究了PDMDAAC-AA和PDMDAAC-AA-HEA-AM在不同pH条件下的形貌。结果表明,两性乙烯基类聚合物对pH具有一定的响应作用,随着pH增加,两性乙烯基类聚合物形貌存在球形、棒状及长针叶状的变化。以鞣制结果作为考察指标,采用均匀试验法研究了不同种类的无机纳米材料(蒙脱土、纳米ZnO、纳米Al2O3和纳米TiO2崔波)对纳米复合鞣剂应用性能的影响,最终选择将纳米ZnO和蒙脱土引入两性乙烯基类聚合物中,制备纳米复合鞣剂。分别采用共混法、原位聚合法和原位溶胶-凝胶法,制备了两性乙烯基类聚合物/ZnO纳米复合鞣剂PDMDAAC-AA-HEA-AM/ZnO(PDM/ZnO)。通过傅立叶红外光谱(FT-IR)、X-射线衍射(XRD)等手段对复合鞣剂的结构进行了表征;并将制备的纳米复合鞣剂配合少量铬粉应用于皮革鞣制工序中考察其应用性能。结果表明:单纯聚合物鞣制后革样收缩温度为88.2℃,增厚率为50.4%。采用共混法制备的纳米复合鞣剂鞣制后革样收缩温度为88.9℃,革样增厚率为53.0%,对纳米复合材料应用性能提高不大;采用原位聚合法制备的纳米复合鞣剂配合3%铬粉鞣后革样收缩温度为92.9℃,增厚率高达174.47%,鞣制后废液中三氧化二铬含量为14mg/L;采用原位溶胶-凝胶法制备的纳米复合鞣剂配合3%铬粉鞣后革样收缩温度为94.5℃,增厚率为63.7%,鞣制后废液中三氧化二铬含量为21mg/L,革样物理机械性能与常规铬鞣后革样相当。提出了PDM/ZnO与胶原作用的机理模型,采用PDM/ZnO对胶原纤维进行预改性,引入了-OH、-COOH等功能基团;纳米ZnO沉积在胶原纤维上。当加入铬鞣剂后,铬鞣剂与胶原及复合材料中的羧基进行多点交联,提高了胶原纤维的分散程度并增加了胶原的稳定性。与常规铬鞣相比,用PDM/ZnO配合铬粉鞣制后革样具有良好的抗紫外老化性及抗菌性。采用原位溶胶-凝胶聚合法制备了具有增深效应的两性乙烯基类聚合物/ZnO纳米复合鞣剂(PDMDAAC-MAA-AA-HEA/ZnO),并将其应用于制革复鞣工序。考察了功能单体丙烯酰胺(AM)、丙烯酸乙酯(EA)、丙烯酸丁酯(BA)、丙烯酸羟乙酯(HEA)、甲基丙烯酸十二酯(LA)和甲基丙烯酸十四酯(TA)对复鞣应用效果的影响。结果表明:酰胺基团的引入对坯革性能的影响不大,且随着单体中酯链长度的增加,复鞣后坯革的增厚率提高;当体系中引入质量分数为5%的丙烯酸羟乙酯(HEA)时,复鞣后坯革的应用效果最好,坯革增厚率达到22.22%,机械强度略有提高,并且具有一定的助染固色效果, K/S值提高了50.8%。采用FT-IR和XRD对PDMDAAC-MAA-AA-HEA/ZnO结构进行了表征,结果表明:成功制备了乙烯基类聚合物/纳米ZnO复合材料。与PDMDAAC-MAA-AA-HEA复鞣后革样相比,两性乙烯基类聚合物/ZnO纳米复合鞣剂具有较好的抗紫外性能;能够使纤维均匀分散,皮革柔软丰满;与未加复鞣剂的空白试样比较,坯革的断裂伸长率提高了20.4%,抗张强度相当,撕裂强度增加了21.1%,同时显著提高了染色效果,K/S值提高了98.3%,具有良好的增深固色作用。通过原位聚合法制备了两性乙烯基类聚合物/蒙脱土纳米复合少铬鞣助剂(PCM),考察了引发剂用量及蒙脱土用量对其应用性能的影响。结果表明:当引发剂用量为6%、蒙脱土用量为5%时,PCM综合性能最优。采用凝胶渗透色谱(GPC)对PCM分子量进行表征,结果表明PCM分子量在3000左右。采用TEM对PCM结构进行表征,结果表明,蒙脱土均匀地分散在聚合物基体中,且同时存在插层及剥离结构。将PCM与少量铬粉配合应用于酸皮鞣制及软化皮的无盐免浸酸鞣制工艺,分别对羊皮、牛皮和牛皮二层绒面革进行鞣制。结果表明,与传统铬鞣法采用7%鞣制后革样相比,采用5%少铬鞣助剂配合3%铬粉对酸皮进行鞣制鞣制,鞣后革样收缩温度超过100℃,与常规铬鞣相当;对软化皮进行无盐免浸酸鞣制,鞣后革样收缩温度约为95℃,较常规铬鞣略有降低,但达到行业标准。革样物理机械性能测试结果表明:少铬鞣工艺不降低成革的物理机械性能。对鞣制后革样进行扫描电镜(SEM)分析,结果表明,采用少铬鞣工艺鞣制后胶原纤维较传统铬鞣革胶原纤维分散成度增加,成革更加丰满。PCM不仅可以大幅度降低鞣制工序废水三氧化二铬含量,而且可以降低鞣制后回水、中和、染色加脂等工序废液中三氧化二铬含量。通过SEM和XRD分析了PCM对胶原结构的影响,结果表明:与常规铬鞣革比较,PCM配合少量铬粉鞣制后革样粒面更加清晰、完整,可保持毛孔形状,并且可使胶原纤维交织程度、无序度增加,纤维更加分散,但没有破坏胶原蛋白三股螺旋结构。采用元素分析(EDS)研究了铬鞣剂在皮革内的分布,结果表明:采用PCM配合少量铬粉鞣制后革样中的铬鞣剂分布更加均匀。通过胶原蛋白酶降解曲线研究了胶原的降解性,结果表明:采用PCM配合少量铬粉鞣制后革样的降解速率及最终降解量均高于传统铬鞣革。提出了PCM配合铬鞣剂与胶原纤维作用的机理模型图。首先,利用PCM对胶原纤维进行改性,引入大量羧基,蒙脱土以片层的形式分散在胶原纤维间及原胶原上,提高了胶原纤维的耐湿热稳定性。然后加入铬鞣剂,铬离子与胶原及PCM中的羧基进行配位,进而沉积在胶原分子间,而尺寸更小的铬离子则沉积在原纤维上。蒙脱土的存在也可以大量吸附铬离子,这样在胶原纤维内部形成了大量的分子内和分子间的网状交联,显著提高了铬鞣剂的吸收和利用率,即使加入少量铬粉也可达到常规铬鞣效果。本研究为纳米复合鞣剂的合成及应用提供了理论参考。对充分利用资源、减少皮革鞣制工序中重金属铬的污染及提高皮革产品质量具有关键性的作用。