【摘 要】
:
工业机器人作为先进制造业的关键支撑装备,其是实现智能制造的基础,也是未来实现工业自动化、数字化、智能化的重要保障。当前国产工业机器人高精度力-位控制系统的发展被运动和力等核心控制技术的缺失所掣肘,对相关问题的研究、方法创新、控制算法实现等迫在眉睫。为此,本文以应用广泛的6R工业机器人(以ABB IRB 4600型机器人为例)为研究对象,对其在运动学与动力学领域存在的关键重难点问题进行了探讨,并结合
【基金项目】
:
四川省科技厅创新驱动项目,项目名称:重大装备原位智能制造技术与装备研制,项目编号:2018ZB006; 横向项目:激光去污喷头三维运动系统研制,项目批准号:HG2018104;
论文部分内容阅读
工业机器人作为先进制造业的关键支撑装备,其是实现智能制造的基础,也是未来实现工业自动化、数字化、智能化的重要保障。当前国产工业机器人高精度力-位控制系统的发展被运动和力等核心控制技术的缺失所掣肘,对相关问题的研究、方法创新、控制算法实现等迫在眉睫。为此,本文以应用广泛的6R工业机器人(以ABB IRB 4600型机器人为例)为研究对象,对其在运动学与动力学领域存在的关键重难点问题进行了探讨,并结合智能优化算法,探索了新的解决方法。论文的主要研究内容包括:(1)根据标准D–H参数法建立了6R工业机器人的运动学模型,分析了机器人的正运动学方程的建立过程,采用改进后的Monte·Carlor方法模拟了机器人的工作空间,验证了该方法的求解有效性;借助专业数学软件Maple推导了IRB 4600机器人逆运动学的解析求解公式,形成了通用的计算流程;将逆运动学求解问题转化为非线性方程组的求解问题,并以最小化位姿误差为目标结合运动平稳性原则构造了优化目标函数,以线性加权和法设计了算法求解的适应度函数。(2)使用Newton-Euler法在标准D-H坐标系下,梳理了机器人各关节力和力矩的递推关系,从而建立起机器人的动力学模型并实现编程验证;分析了机器人动力学参数的辨识问题,分别得到无摩擦力和考虑摩擦力因素时机器人需要辨识的动力学参数集合;介绍了参数辨识的常用方法,将辨识问题转化为非线性系统的优化问题,以最小化力矩误差为目标构造了算法求解的优化目标函数,并相应设计了适应度函数。(3)针对逆运动学求解存在的多解、精度低及通用性差等问题,提出了一种适用于各类6R工业机器人求逆解的组合优化算法。通过使用混沌映射初始化种群、收敛因子非线性更新、自适应惯性权重及引入模拟退火等4种策略得到了一种改进的鲸鱼优化算法(MSWOA)用于逆运动学问题求解;组合算法将MSWOA算法求解的结果作为初始值,再利用Newton–Raphson数值法快速迭代出满足精度要求的运动学逆解。(4)在MATLAB环境下开展多组机器人运动学及动力学关键问题求解的仿真试验,逆运动学求解试验结果表明:改进后的鲸鱼算法求逆性能得到了较大提升;相比于直接利用鲸鱼算法进行求逆,组合优化算法具有求解速度快、稳定性好、精度高的特点,同时可以解决对奇异点和一般6R机器人的求逆问题,证明了该算法求逆的可行性与有效性。使用PSO算法和WOA算法进行动力学参数辨识试验,分别通过一次性整体辨识与分步多次辨识,经模型验证,结果表明:PSO算法具有更好的求解性能,分步辨识可以得到更准确的动力学参数值,证明了使用优化算法解决参数辨识问题的有效性。
其他文献
当下,二维人脸识别已广泛应用于生活中,如刷脸支付、考勤管理等,但其存在防伪性差、误识率高等缺点。故人脸识别的研究重心逐渐转向三维人脸识别,其关键基础在于三维人脸模型的采集。其中,基于双目视觉的三维采集由于建模速度快、精度高成为该领域的热点,包含被动测量和主动测量。前者在自然光源下捕获目标图像,通过匹配立体图像中对应的点以恢复三维信息,如何提高立体匹配的精度是其中的关键。然而,被动三维测量难以满足高
近年来随着深度学习、计算机视觉技术的迅速发展,室内智能小车被广泛应用在社会生产生活中的多个领域,并逐渐形成了以激光雷达为主、多种感知设备共同协作的室内感知控制方案。单线激光雷达凭借其结构简单、成本低、精确度高、稳定性好等特点广泛应用于室内机器人感知系统中。单线激光雷达感知虽然可以有效的进行地图构建和定位,但是导航过程中单线激光雷达仅能获取单一平面稀疏激光点云,对非扫描平面障碍物感知不足与非均匀刚体
步态识别作为一种新兴的生物特征识别技术引起了广泛的关注和研究。与传统的生物特征识别技术相比,其难以伪装,具有非接触性、隐蔽性等特点,逐步在安防,医疗等领域中发挥了重要的作用。然而在实际场景中,遮挡或者携带物都会改变行人的行走特征,并且拍摄视角的变化也会改变行人轮廓的形状,从而影响识别结果。本文针对现有的步态识别方法在多个不同视角下的识别率不高问题,使用深度学习技术来展开研究。本文主要工作及创新点如
为解决空域日益拥堵、空中交通流量日益增加等问题,美国联邦航空管理局提出了自由飞行的概念。伴随该概念的提出,空中交通管制问题变得尤为复杂。随着我国民用航空运输事业的蓬勃发展及民航运输需求日益增加,为保证自由飞行条件下飞行器的安全,进行飞行冲突解脱策略的研究显得十分重要。现有飞行冲突解脱方法包括最优控制类冲突解脱方法、概率类冲突解脱方法以及数学规划类冲突解脱方法,这些传统冲突解脱方法存在着效率较低、计
我国目前共有1445种鸟类[1],其中不乏像白鹮、丹顶鹤等濒危物种。由于鸟类动作比较灵活,对鸟类影像资料的收集大多是通过相机进行拍照,这大大限制了鸟类教育宣传、保护和行为研究的工作开展。三维重建技术可以给上述工作提供强有力的帮助,它是指通过一定方式获取物体三维形状,从而可以更加直观的从各个视角对物体进行观察。常采用的三维重建方式包括,CAD建模和激光建模等。但这些方式存在一定的局限性,比如建模软件
随着工业的发展,零件内螺纹的加工精度要求越来越高,部分零件由于具有复杂的装配要求,其螺纹孔不仅分布复杂,甚至经常分布在不同平面内。传统的手动攻丝加工虽然具备较强的灵活性,可以完成复杂分布螺纹孔的加工,但其加工效率低,操作无法离开人力,同时其加工精度无法满足大多数企业的生产需求;而现有的组合钻床虽然效率高,但只能完成同一平面内的孔的内螺纹加工,需要移动工件才能完成复杂孔分布零件的内螺纹加工,而且组合
增材制造技术又称3D打印,该技术自1986年首次商业化至今,已经过去了35年,而其真正的高速增长期是从2012年开始的。笔者认为,该现象主要由两个重要因素所致:一个是具有低成本优势的FDM技术专利到期,另一个则是因为一个称为Rep Rap的由低成本嵌入式板卡驱动的低成本3D打印机开源项目的出现。这两个因素的共同作用使得3D打印技术以以往不可想象的低成本和低门槛进入了大众消费者群体中。而近几年基于L
在移动应用GUI(Graphical User Interface,用户图形界面)的开发过程中,界面开发人员需要识别设计原型图中抽象的具有设计意图的组件,并将其转化为准确具体的代码。然而,由于设计者与开发者广泛存在的领域背景知识的差异,开发人员对原型图组件的理解往往存在偏差,导致组件识别错误频出且难以更正,造成最终产品与设计不符,极大的增加了开发成本;不仅如此,在代码自动生成、界面自动化测试等围绕
五轴数控机床的性能决定了一个国家制造行业的发展水平,从国防事业中各种大型复杂零件的高效精密加工,到我们随时使用着的手机零部件,这些外观精巧且加工精密的产品都是由精密数控机床加工而来。然而,在高精密制造方面,虽然我国使用着和国外相同规格的功能部件,并且也拥有国产的先进数控系统,但加工精度与国外相比仍存在差距,想达到同样的加工精度还无法自给自足。数控机床的加工精度受诸多因素的影响,比如机床自身零部件在
随着用户对数控系统的需求将朝着个性化、定制化发展,目前市面上成熟的封闭式数控系统存在开放性和灵活性不足的问题。除此之外,大部分优质的数控系统还掌握在近期与我国时有摩擦的部分西方发达国家手中。市场对国外封闭式数控系统的依赖不仅限制了数控系统的个性化,更不利于我国制造业长期稳定的发展。为了满足机床对数控系统的开放性、灵活性需求,同时为了降低对其他国家拥有产权的产品的依赖,本文基于LinuxCNC开发了