TBCFB合成气制甲醇工艺模拟及自热再生能量优化

来源 :太原理工大学 | 被引量 : 1次 | 上传用户:xipuwa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
我国特殊的能源禀赋决定了以煤炭为主体的能源消费结构在短时间内难于改变。而现代新型煤化工作为煤炭利用的重要方式可有效提高煤炭的综合利用水平,推动煤炭高效低碳化利用。其中,煤制甲醇作为现代新型煤化工的重要组成仍存在能耗大、碳排放高、大量低品位余热浪费等问题。我国的能源结构和利用水平下,节能降碳也仍是实现规模化降碳的重要手段,日本东京大学提出的三床耦合的循环流化床(TBCFB)煤炭分级分质利用技术能有效的提高煤炭的利用效率,提升煤炭综合利用的水平,以其为核心的煤基多联产系统,能够实现煤的高质高效低碳化转化。并且自热再生(SHR)作为一种新的能量循环理论,通过提高物流能质系数,使得低品位热量充分利用,从而降低系统能耗。因此本文主要以三塔式循环流化床(TBCFB)为基础的煤基多联产系统中甲醇合成工艺为研究对象,构建以TBCFB合成气为原料的甲醇生产新型工艺,利用大型化工流程模拟软件对该工艺进行模拟和模型验证,并利用自热再生理论进一步进行能量优化,主要完成以下工作。通过对三塔式循环流化床中的鼓泡流化床气化灵敏度分析,确定了用于甲醇合成的最佳水碳比。结果表明,当水碳比达到2.7时,TBCFB半焦气化产生的合成气CO和H2满足甲醇合成原料气的要求;以此为基础确定了以TBCFB半焦气化合成气为气源的甲醇合成新工艺。新设计的工艺中,TBCFB产出的原料气采用低温甲醇洗技术脱除其多余的CO2和H2S等酸性气体后,进行甲醇低压合成和三塔精馏精制,无需水煤气变换。利用化工过程模拟软件建立其模拟流程,并与工业数据对比,验证模型的准确性,然后对各单元进行能量分析,确定各单元能量目标。结果表明,甲醇合成单元为阈值问题,通过自身换热网路设计可以满足能量需求,且最大可以回收21604 k W热量,无需额外热源;低温甲醇洗单元和甲醇精馏单元为夹点问题,其中低温甲醇洗最大可以回收9113k W的热量,但仍然需要2105 k W的冷公用工程和1445 k W的热公用工程,甲醇精馏最大可以回收13985 k W的热量,还需要14375 k W的热公用工程和14229 k W的冷公用工程。在上述余热分析的基础上,确定低温甲醇洗和甲醇精馏单元自热再生优化方案及其操作条件,并对优化后的流程重新进行换热网络设计,然后与优化前的流程进行能耗对比,结果表明:自热再生优化后的TBCFB甲醇合成工艺能耗显著降低,其中低温甲醇洗单元冷公用工程节约了29.4%,而热公用工程节约了49.8%,总能耗节约了25.8%;甲醇精馏单元冷公用工程节约了69.5%,总能耗节约了26.1%。基于自热再生的TBCFB甲醇合成工艺显示出较大的节能潜力,为TBCFB低阶煤清洁转化多联产系统设计提供了理论基础。
其他文献
Lavon流域位于美国德克萨斯州首府达拉斯的东北方,流域的水文循环过程对当地用水安全和水利工程的建设和管理有至关重要的作用。土地利用变化作为流域径流变化和水文要素变化的重要驱动因素,探究其变化的水文响应对区域的水资源开发利用和生态环境的建设和保护至关重要。基于此,本文建立了Lavon流域SWAT水文模型,采用历史反演法和极端土地利用法模拟研究了不同土地利用情景下的径流变化特征和规律。本文根据重分类
流化床作为洁净煤技术之一已大量投入商业运营,其低成本污染物控制优势越来越突出。工程实践表明,当循环流化床锅炉的入炉煤平均粒度控制在1 mm以下时,炉膛出口烟气的NOX浓度可大大减少,对于某些煤种,仅通过炉内脱硫和低氮燃烧就能够实现硫氮氧化物原始超低排放。但是,将原煤粉碎至平均1 mm粒度的碎煤机还没有。磨煤机可将煤磨到微米级别,但是其粉碎工作主要是靠“磨”,不经济;破碎机主要靠挤压、冲击来破碎物料
晋祠泉域岩溶地下水水量稳定、水质良好,是太原市及其周边县市工农业供水的重要水源。近几十年,泉域内的人口密集增长、城市化进程稳步推进和经济社会高速发展,使得水资源供不应求、供需矛盾突出,尤其是人为因素(采煤排水、岩溶水开采、汾河水库的修建等)对岩溶地下水系统的影响愈来愈大,最终导致泉水流量不断减少并断流。泉水断流不仅改变了岩溶水系统的水动力场,对于水化学演化过程也产生了深刻影响。为科学认识晋祠泉域岩
近些年来,世界主要国家加强了对极地考察装备的研究,相应的监测技术也快速发展,但多数监测方式仍以遥感卫星为主,获取大范围的极地海洋、海冰与冰雪数据,缺乏小范围内的现场定点观测的环境数据。由于我国在极地的科考活动绝大部分是在当地处于夏季时进行,并且人员活动范围也受到地理因素的限制,无法对极地环境进行长期、大面积的监测。而随着小型飞行器智能化程度的提高,其在各行各业中被广泛使用,在极地科考中,无人机的应
板式换热器由于其结构紧凑、传热效率高和可以灵活匹配多种工况的优点,已广泛应用于化工、供热和食品等领域。因此,深入研究板式换热器的换热内在机理,提高其换热效率,对于提高能源利用率,节约资源有着重要的意义。前人的研究多数旨在分析几何结构对板式换热器传热性能的影响,而对于其横向流道内触点的分布、流动及换热特性却少有提及;此外,板式换热器内流道复杂多变,多数文献都只针对上下波纹振幅相同的流道进行分析,而对
圆柱绕流一直以来就是流体力学领域的经典问题之一,在实际工程中圆柱绕流现象也普遍存在,例如桥墩,海洋作业平台,电厂冷却塔等。近年来随着深海油气的开发,海底管道的铺设常常采用多圆柱体系统,由于采取较为密集布置方式的多圆柱系统在流体的作用下,极易产生结构体损坏,尤其是当圆柱的固有频率与旋涡的脱涡频率十分接近时,在很大程度上会引发共振现象,加速圆柱结构的疲劳损坏。在目前的工作中,单圆柱和双圆柱布置方式的绕
复杂网络是研究实际系统单元相互作用的有力工具,边作为节点建立联系的直接体现,是网络的重要组成部分。边在网络中的作用具有异质性,其中关键边具有保障信息流通顺畅和网络结构完整的决定作用。挖掘快速、准确识别关键边的算法一直吸引着众学者的广泛关注,目前他们从不同角度提出了多种关键边的识别算法。识别关键边不仅有理论研究意义,而且它对指导网络保护、控制策略方面有实际的应用价值。本文针对依靠网络结构识别关键边的
注意缺陷/多动障碍(attention-deficit/hyperactivity disorder,ADHD)是一种常见的神经发育性疾病。这种病好发于儿童时期,并且大多数患者的症状在其成年之后仍然存在。成人ADHD患者在学习和工作时难以集中注意力,并且在情绪与行动的控制上存在问题,给患者本人、家属以及社会带来沉重的负担。因此,来自各个领域的研究人员一直在努力探索ADHD的发病机制以及辅助诊断办法
今时今日,心血管疾病引发的一系列社会问题日益严重。心力衰竭作为许多心脑血管疾病的终点事件逐渐引起相关研究者的关注与重视。基于心电信号研究心衰风险自动预警模型,对于缓解医疗资源不平衡、全面提升人民生活质量具有积极意义。本文的主要研究内容包括:(1)提出了一种适用于最常见的12导联心电图的自动分析神经网络结构实现9种典型心律失常的多标签分类,特点在于将卷积神经网络和循环神经网络相结合并引入一种新的注意
自新中国建立以来,国民经济取得巨大的发展。其中,建筑业作为实业界的代表之一,为国民经济腾飞做出了重要的贡献,其地位也在稳固上升。如今,我们深处不断变化的知识与信息网络时代,建筑行业的竞争也愈加激烈,为了在激烈的竞争环境获取竞争优势,直至赢得竞争,有必要打造一套超越竞争的企业信息化管理系统。而当前建筑业采用的人力资源管理模式有所局限,已经不适合其分布广泛的行业特性,也无法使得建筑企业获取持久的竞争优