论文部分内容阅读
对高密度聚乙烯(HDPE)进行增韧,使这一大品种通用塑料能够作为工程塑料使用,是国内外研究开发新型工程塑料的一个重要方向。从目前国内外研究开发的情况看,用弹性体增韧的增韧效果最好,但是,一般的弹性体增韧使HDPE韧性大幅度提高的同时,刚性(拉伸屈服应力、弯曲弹性模量)却显著降低了;用刚性粒子(有机粒子、无机粒子)增韧,具有优良的刚性,但是,韧性提高的幅度小,而且主要适用于韧性已比较好的HDPE。因此,如何使弹性体增韧HDPE韧性大幅度提高的同时又能较高的保持优良的刚性,是亟待解决的具有重要科学技术意义和应用价值的课题。 本工作在分析出一般的弹性体增韧HDPE韧性大幅度提高的同时刚性显著降低在结构方面三个原因的基础上,设计出了能呈现优良刚性的弹性体增韧HDPE必须具有的结构特征;为了获得好的技术/经济比,设计采用增韧母料(TMB)工艺,即首先制备出具有所设计结构特征的TMB,用TMB与HDPE热机械共混制备增韧HDPE的过程中,将TMB的结构特征“移植”到增韧HDPE中。 基于此,运用本工作研究出的“聚合桥连接、动态硫化、微相分离”制备TMB的原理和技术,以2200JHDPE(记为E1)或5000SHDPE(记为E2)为基体树脂,乙丙弹性体和/或丁苯弹性体为增韧剂,加入架桥剂等,研制出了不同配方的称为E型的增韧母料(E-TMB,分为E1-TMB和E2-TMB),将E-TMB与HDPE热机械共混,制备出了多种类型的增韧HDPE(HDPE/E-TMB)。采用分级提取、IR、TEM、PLM、DSC、DTA、SEM、电子万能试验机、毛细管流变仪等研究了E-TMB的化学与形态结构、熔体流动性,HDPE/E-TMB的形态结构、力学性能、脆韧转变机理,热性能、熔体流变行为、非等温结晶行为等,并提出和验证了表征聚合物、聚合物共混物熔体表观粘度(η_a)与温度(T)及剪切速率((?))关系的线性方程。得到了如下主要结果和结论: 1.在所研究的配方范围内,E1-TMB和E2-TMB中以接枝共聚物、交联聚合物形式存在的弹性体的含量分别为15.31%~25.56%(占弹性体总量的51.39%~76.03%)和9.99%~12.85%(占弹性体总量的29.60%~36.83%),以接枝共聚物、交联聚合物形式存在的HDPE的含量分别为2.41%~11.51%(占HDPE总量的5.27%~19.10%)和4.09%~11.36%(占HDPE总量的7.98%~19.17%),由于接枝共聚物的含量分别只有0.51%~4.49%和1.74%~2.34%,所以,这两类E-TMB中以接枝共聚物、交联聚合物形式存在的弹性体及HDPE的绝大多数,主要是以通过聚合桥链连接的