西洋参多糖的提取分离、结构表征及抗氧化活性研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:stystill
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
西洋参与人参同属而不同种,是多年生草本植物,具有延缓衰老、滋阴补肾等功效。研究表明西洋参多糖具有降血糖和抗氧化等生物活性。目前西洋参多糖的研究多以根为主,茎和叶多糖被废弃,在很大程度上造成了资源浪费。本文以西洋参根、茎和叶为原料,采用热水煮提、乙醇醇沉制备粗多糖,并通过柱层析纯化得到精制多糖,之后利用核磁、质谱等手段对其结构进行初步表征,进一步通过体外抗氧化实验比较了西洋参根、茎和叶多糖的生物活性,论文的研究内容及结果如下:利用水提醇沉法制备西洋参粗多糖,先利用响应面法优化了提取工艺,最佳工艺条件为:料液比1:20、提取时间及温度分别是140 min、95℃,西洋参根多糖得率可达20.17%。然后用酶-Sevag法除蛋白和树脂吸附法脱色,得根、茎和叶多糖的除蛋白率分别为88.6%、84.9%和82.1%,脱色率分别为85.4%、78.7%和62.3%。进一步利用DEAE-纤维素阴离子交换色谱柱,对西洋参根、茎和叶多糖进行分离纯化,分别得到水洗脱的根、茎和叶中性糖级分RPS1、SPS1和LPS1,不同浓度的Na Cl洗脱得到根酸性多糖RPS2、RPS3、RPS4,茎酸性多糖SPS2、SPS3,叶酸性多糖LPS2、LPS3。采用凝胶渗透色谱对西洋参多糖的分子量进行测定,中性多糖分子量在1.9~5.4×10~5 Da之间,酸性多糖分子量差异较大,在3.5×10~3~4.1×10~6 Da之间。单糖组成分析结果表明,三种水洗多糖主要由葡萄糖、甘露糖和半乳糖组成;酸性多糖主要由鼠李糖、糖醛酸、葡萄糖、半乳糖和阿拉伯糖组成;中性多糖的葡萄糖含量较高,酸性多糖中的半乳糖醛酸含量较高,且随着洗脱液盐浓度的增大而逐渐升高;西洋参根、茎和叶多糖在单糖组成上有一定差异。红外光谱、核磁以及质谱分析表明三种水洗多糖大部分是α与β构型均有的吡喃糖,酸性多糖主要以β型吡喃糖为主。中性多糖所含葡萄糖之间以α-1→4糖苷键相连,RPS2、RPS3、SPS2与LPS2所含半乳糖和半乳糖醛酸之间以1→4糖苷键连接,RPS4、SPS3和LPS3所含半乳糖醛酸之间以1→4糖苷键连接。采用ABTS、DPPH和羟基自由基法对西洋参多糖样品进行抗氧化活性检测,结果表明西洋参多糖对这三种自由基均有一定清除能力,且呈浓度依赖性,但活性均低于抗坏血酸。西洋参根、茎和叶多糖的抗氧化性存在一定的差异性,在浓度为10 mg/mL时,其中RPS3和RPS4多糖级分的清除率较高,分别为80.61%、55.05%。通过PCA分析表明,中性糖与酸性糖可以显著区分开来,并且不同部位来源的酸性糖也有一定区别。综上,本论文探究了不同部位来源西洋参多糖的差异,为西洋参的综合利用提供依据。
其他文献
光催化产氨反应能够有效利用空气中充足的氮气,缓解传统合成方法导致的全球变暖等问题。催化剂表面受光激发产生的载流子激活N2分子中的N-N键,并与来自水的质子结合转化为NH3分子。BiOCl具有独特的层状结构、无毒、化学性质稳定等优势,但因光生载流子分离效率低、禁带宽度较大、光吸收程度较弱、比表面积较小等弱点限制了其在固氮领域的应用。针对这些问题,本文采取调控物相结构、表面形貌和构建异质结构的方式对B
随着各种玻璃陶瓷体系不断被研究完善,玻璃陶瓷已然成为当前最具发展潜力的陶瓷材料之一,白榴石玻璃陶瓷具有较高的机械强度、断裂韧性及生物相容性,通常被用于高性能义齿材料。但是,作为一种难加工的硬脆材料,该材料在磨削过程中通常会产生大量的表面和亚表面损伤,严重影响材料的性能。为了提高白榴石玻璃陶瓷的精密磨削加工质量,有必要对材料在磨削过程中的材料去除机理进行研究。首先,通过准静态条件下纳米压痕实验获取了
生物电极是实现生物组织与外部电气硬件信息交流的关键界面器件,其在人类大脑研究、生物电子医疗和神经义肢等科学研究领域起着至关重要作用。为匹配生物组织的拉伸特征,例如,人体肌肉具有40%的伸缩,要求电极具有一定的柔韧性和可伸缩性,使其在拉伸状态下具有低电阻变化率,避免因电阻变化巨大,形成低清晰度、不准确的电信号,甚至电极失效。然而,典型导电材料(金属、碳、导电聚合物等)的不可拉伸性,很难使电极在高拉伸
随着能源消耗和环境污染的加重,开发新型清洁能源成为当下的研究热点。电解水是解决能源和环境危机的一种很有前途的方法,该过程可以产生清洁的氢能源,且二氧化碳排放为零。但组成水分解的析氢反应和析氧反应均需要高效的催化剂驱动。金属有机骨架材料(MOFs)因具有稳定可调控的结构及较多的活性表面,在电催化方向具有较大的开发前景。基于ZIF-67开发的Co基电催化剂,在保留前驱体材料优势的基础上进一步提升了材料
在厌氧消化过程中,由产酸发酵菌群产生的丙酸、丁酸等有机挥发酸(VFAs),须由产氢产乙酸菌群将其转化为乙酸和H2后方能进一步被产甲烷菌群利用并最终被转化为甲烷,具有互营降解的显著特点。其中,丙酸是最易由产酸发酵菌群产生,却是最难被产氢产乙酸菌群进一步转化的VFA,被认为是影响厌氧消化效能和系统运行稳定性的重要因素。基于颗粒活性炭(GAC)可以通过构建微生物种间直接电子传递(DIET)途径促进VFA
受自然界生物马达的启发,研究出了许多人造微马达,这类微马达能够将周围介质中储存的化学能或其他形式的外部能量(如光)转化为自主驱动实现运动。目前人造微马达主要由有机高分子材料和无机硅材料以及贵金属材料制备而成,面临着生物相容性差等问题,并且现有的大部分化学驱动微马达需要不断补充过氧化氢燃料为马达提供能量,某些中间有毒副产物限制了微马达的广泛应用。因此亟待开发能实现多种生物酶有效分装及协同作用的具有良
石墨烯气凝胶是一种以石墨烯为主体,具有三维网络骨架结构的骨架材料。具有质轻、孔隙率高、比表面积大、导电性好、亲油疏水等优异的物理化学性能,在航空航天,电极材料,能源储存,环境保护等众多领域有着非常广泛的应用。然而,由于石墨烯片层间存在π-π键及范德华力,导致石墨烯纳米片层之间极易发生团聚与堆叠,且随着材料多孔性的提高,结构的机械性能难以避免随之降低。故在构筑石墨烯气凝胶三维网状结构的同时,如何保证
SiCp/Al复合材料以其优异的性能逐渐应用于航空工业。但由于尺寸的限制,超大型零件必须采用锻造工艺才能实现热加工。因此,研究分析颗粒增强铝基复合材料锻造工艺,能够为实际的SiCp/Al复合材料锻造提供理论支撑和技术指导。本文以粉末冶金态15vol%SiCp/2009Al复合材料为原始试样,在热模拟实验机上进行了热压缩实验,分析并构了复合材料的热变形本构方程和热加工图。采用得出的最佳变形参数对Ф1
亚砜是一类具有良好生物活性和重要应用价值的含硫化合物,广泛存在于大量天然产物、药物、配体和功能材料中,是有机化学合成中重要的结构单元,更重要的是,亚砜化合物在有机催化以及金属缓蚀领域开始进行应用。因此,亚砜化合物的合成方法及其在金属缓蚀领域的应用受到科研人员越来越多的关注。具体工作如下:亚砜化合物的合成方法研究。该反应以1H-吲哚与苯亚磺酰胺为原料,三氟乙酸为促进剂,水为溶剂,在温和的反应条件下即
近年来,太阳能、风能等清洁的能源已经开始逐渐普及。然而,这些种类的能源会受到每日和季节性的间歇性和区域变化,在目前储能技术还不够完善的情况下,可能会制约这些能源的使用效率,从而引发一系列的能源短缺问题。解决这个问题最有前景的方法之一是将不稳定的能源转化为相对较为稳定的化学能,氢能作为一个能量密度高较为稳定的能源可以满足这些需求。电催化分解产氢是制氢的一个重要的手段,其半反应产氧反应同样可以用来制备