【摘 要】
:
核反应堆精细中子输运-传热-流动(Neutron Transport-Thermal-Hydraulics,NTH)耦合计算是先进反应堆数值模拟的研究重点之一,涉及中子物理、流体力学以及传热学等多学科交叉。由于中子输运模拟的复杂性以及不同物理过程之间的差异性,堆芯内部耦合NTH过程的精细模拟仍需深入研究。本文基于实现简单,具有强并行性和多场耦合优势的格子Boltzmann(Lattice Bolt
【基金项目】
:
自然科学基金面上项目(No. 51976043);
论文部分内容阅读
核反应堆精细中子输运-传热-流动(Neutron Transport-Thermal-Hydraulics,NTH)耦合计算是先进反应堆数值模拟的研究重点之一,涉及中子物理、流体力学以及传热学等多学科交叉。由于中子输运模拟的复杂性以及不同物理过程之间的差异性,堆芯内部耦合NTH过程的精细模拟仍需深入研究。本文基于实现简单,具有强并行性和多场耦合优势的格子Boltzmann(Lattice Boltzmann,LB)方法,发展了中子输运高精度LB模型,建立了中子输运LB模型的自适应、非结构网格以及大规模GPU并行加速方法,并在此基础上构建了NTH模拟的统一LB框架。建立了中子输运高精度LB模型并编制了相应的计算程序。针对中子输运SN方程、SP3方程以及中子扩散方程,建立了高精度LB模型。通过高阶Chapman-Enskog展开建立了高精度中子扩散LB模型,在不明显提高计算复杂度的前提下有效提高计算精度;采用耦合双分布LB模型通过高阶Chapman-Enskog展开建立了中子输运SP3方程高精度LB模型,保持了标准LB模型所有优势并有效提高计算精度;从离散速度Boltzmann方程出发,建立了中子输运SN方程有限差分LB模型,提高了准确性和稳定性。数值结果表明,以上高精度LB模型具有比标准LBM更高的精度和稳定性,同时对多维非均匀堆芯以及时空动力学问题具有较高的精度和良好的适应性。将中子输运LB模型发展到自适应网格和非规则网格条件,建立了中子输运自适应网格和非结构网格LB模型并编制了相应的计算程序。针对先进反应堆内部复杂中子分布,发展了自适应调整网格分布同时网格之间关系明确的迁移流分块自适应网格优化(Streaming-Based Block-Structured Adaptive-Mesh-Refinement,SSAMR)中子输运LB模型。消除了传统自适应网格技术的复杂树状数据结构,并克服了多块网格技术灵活性差的问题。为提高复杂堆芯几何适应性,发展了非结构网格有限体积中子输运LB模型,能灵活模拟复杂几何中子输运问题。模拟结果表明,基于SSAMR的中子输运LB模型能准确模拟多群中子输运问题,同时能灵活而简单地自适应调整网格结构;非结构网格中子输运LB模型能准确而灵活地适用于不同几何堆芯结构。对中子输运LB模型开展了并行加速技术研究,建立了GPU并行加速的中子输运LBM技术并编制了相应的计算程序。针对精细反应堆数值模拟耗时长的特点,发展了GPU集群并行加速的中子输运LB模型。由于中子输运LB计算简单且局部性强,极适合于GPU多线程并行加速计算。针对中子输运SN方程的角度离散特性,发展了空间-角度二级并行的GPU加速中子输运SN方程LB模型。结果表明,GPU并行加速中子输运LB模型能有效提高计算效率,同时空间-角度二级并行加速能进一步提高中子输运SN方程LB模型的计算速度。在以上研究的基础上,针对反应堆堆芯多物理耦合条件,建立了中子输运-传热-流动耦合LB计算框架并编制了多物理耦合LB计算程序。在中子输运LB数值计算方法的基础上,耦合传热、流动计算过程,建立了细致求解反应堆核、热、流耦合过程的统一LB框架lbm NTH。将中子输运SN、SP3以及扩散方程等三种常用中子输运控制方程,导热及对流换热等传热形式,以及Navier-Stokes和LES方程等流动控制方程统一到LB框架下进行求解,并在统一的数据结构及离散格式下考虑其耦合关系。为适用于液态核燃料堆芯,基于有限Boltzmann形式发展了液态燃料缓发中子先驱核守恒LB模型。数值结果表明,lbm NTH框架可以灵活而准确地模拟耦合NTH过程;小尺度条件下中子输运SP3近似比中子扩散近似能更准确地模拟中子输运过程;温度反馈在高温条件下有很强的作用;提高慢化剂流速能有效改善传热并展平温度分布,有利于堆芯安全稳定运行。综上,为实现核反应堆内中子输运过程与传热、流动过程的耦合求解,本文建立了中子输运过程高精度LB数值模拟方法,并在统一LB框架下实现了中子输运、传热、流动过程耦合模拟。本文工作是工程热物理理论在核工程领域的有效应用和拓展,可以为反应堆多物理耦合研究及大规模工程应用提供一种新的思路。
其他文献
相较于传统由旋转电机和机械传动部件构成的直线运动装置,永磁直线同步电机(Permanent Magnet Linear Synchronous Motor,PMLSM)更易获得高推力、高速度、高动态响应和高精度等性能,在精密直线运动场合具有广泛的应用前景。然而由于初级铁芯纵向开断,PMLSM存在特有的纵向端部效应。纵向端部效应一方面与齿槽效应耦合作用,导致电机气隙磁场产生较大畸变,另一方面导致电机
近年来,助推-滑翔飞行器研究逐渐成熟,世界航天强国开展了大量相关试验,部分国家的助推-滑翔飞行器已进入战斗值班状态。不同于运动形式固定的弹道式目标,助推-滑翔飞行器具有飞行阶段多、机动能力强、机动形式多变的特点,其强突防能力为现有导弹防御系统造成极大挑战,发展助推-滑翔飞行器拦截相关技术刻不容缓,对保护我国国家安全及人民生命财产安全具有重要的战略意义。助推-滑翔飞行器轨迹跟踪技术为整个拦截过程提供
总有机卤(TOX)是水中所有卤代有机物的总和,因其可方便评价水中消毒副产物(DBPs)的含量,已成为水中污染物处理和监控的一个重要指标。但现有TOX分析方法主要通过活性炭吸附分离有机卤,不同活性炭吸附能力存在差别,且因吸附分离过程存在相变而对有机卤影响较大,显著影响了分析的稳定性和准确性,限制了TOX分析方法的常规应用。基于此,本研究提出建立一种电渗析及紫外联用的预处理技术,同离子色谱配合使用可准
染料敏化太阳电池(DSSC),是一种潜在的、低成本光伏技术,可将太阳光转换为洁净的电能。DSSC所具有的调色板和透明度等优质特性,能同步提供日光与电能,可被广泛运用于建筑集成光伏(BIPV)。然而,基于钴基电解质的高效DSSC的稳定性限制了DSSC的大规模生产应用。光敏染料作为DSSC器件的核心组成部分,控制器件的光吸收和界面电荷复合,对器件的稳定性起着决定性作用。围绕这一主题,本文将从多角度就基
金属镁具有体积能量密度高、沉积过程无枝晶、成本低廉等优点,以金属镁为负极的可充镁基电池有望成为新一代廉价高效储能电池体系。但二价镁离子的离子半径较小,具有较高的极化强度,导致镁离子在电极材料内表现出迟缓的电化学反应动力学,限制了镁离子电池的发展。镁锂混合离子电池是以储锂材料为正极,镁金属为负极,镁锂双盐混合溶液为电解液的新型电池体系。该电池体系具备镁基电池优势的同时,解决了储镁材料动力学迟缓的问题
近年来,锌离子电池以其成本低、安全性高、生态友好等优点在储能领域展现出了巨大的发展潜力。在众多电极材料中,钒基材料,尤其是钒氧化物,具有开放式的框架结构,可容纳大量的Zn2+离子进行能量存储。虽然二价Zn2+可通过多电子转移反应提供较高的能量密度和比容量,但Zn2+离子电荷密度高、离子半径较大,会与主体材料产生强静电引力,加速主体材料晶格结构的弯曲振动,同时引起电极材料严重的晶格变形,导致主体材料
非凸优化问题即具有非凸目标函数或非凸约束集的优化问题。机器学习、压缩感知、数据挖掘等领域中许多重要的实际问题均可建模为非凸优化问题。然而,凸性的缺失给此类问题的算法构造及收敛性分析带来了挑战。近年来,非凸优化问题的算法探究吸引了学者们的广泛关注。神经动力学优化算法因其具有大规模并行计算的能力,可以更好地适应实时求解的需求。基于此,本文主要研究四类不同的非凸优化问题,并针对性地提出可以高效求解的神经
化石燃料的大量开采使用,给社会带来了巨大的能源和环境危机。开发低成本、高效的非贵金属电解水催化剂廉价高效地生产氢气有望为解决这一难题带来契机。近年来,过渡金属磷化物及偏磷酸盐以其电解水析氢/析氧活性高、稳定性好、以及p H耐受限宽广等诸多优势而成为研究热点。然而,低载量、高导电性以及高稳定性过渡金属磷化物及偏磷酸盐催化剂的设计合成依然面临巨大的挑战,其中过渡金属偏磷酸盐鲜有报道,其合成方法和性能仍
碘代芳香类有机物作为小分子碘代有机物(如碘仿和一碘乙酸)的重要前体物,其毒性高于碘代脂肪类副产物的毒性,且远高于氯代和溴代类似物的毒性。碘代芳香类有机物的生成直接影响水质安全,因此受到研究学者的关注。锰氧化物(高锰酸钾(KMnO4)和二氧化锰(MnO2))具有较好的稳定性和经济性,被广泛用于去除水环境中的有机和无机污染物。研究发现KMnO4和MnO2处理含碘水时将引起小分子碘代有机物的生成,威胁其
迫在眉睫的环境问题和能源危机推动了高效环保的清洁能源转化和存储技术的发展。可充电锌空电池由于较高的理论能量密度、出色的安全性和环境友好性等优点而被视为下一代可持续能源转换设备。然而,锌空电池的发展一直受到氧还原反应(ORR)和氧析出反应(OER)缓慢的反应动力学速率与过高的反应势垒的制约。因此,开发高性能、低成本的非贵金属OER/ORR双功能催化剂成为发展锌空电池的关键。在众多非贵金属催化剂中,金