基于全矢机器学习的不平衡故障精确诊断研究

来源 :郑州大学 | 被引量 : 0次 | 上传用户:wenfei87827
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着旋转机械大量应用于电力、石化冶金以及航空航天等工业领域,其设备安全问题由于关乎人民群众的生命财产安全,逐渐成为国内外学者关注的焦点,其中由于转子不平衡以及不平衡引发的其他故障最为常见,约占总故障的70%。现如今随着工业4.0智能化工业的高速发展,基于大量工业数据的故障诊断技术层出不穷,以数据驱动的智能故障诊断方法以其高效快速的特点逐渐成为一颗冉冉升起的新星。本文以转子不平衡故障为研究对象,采用时频域特征与额外特征结合的极限学习机算法、自适应提取特征的稀疏自编码器算法进行对比。针对单一通道振动信号信息不完全,会对诊断结果产生误判的情况,采用全矢谱信息融合技术,对双通道信号进行融合。结构参数采用经验和借鉴的方法,进行两种算法单双通道共四个模型的对比,并使用遗传算法对模型对模型进行优化。文章主要的研究工作如下:建立基于全矢谱技术和极限学习算法的不平衡故障诊断方法和基于全矢谱和支持向量机的不平衡故障诊断算法并通过实验进行验证。过程为首先使用全矢谱技术对双通道信号进行融合,产生信息更加完整的融合信号,提取融合信号的时频域特征、全矢能量特征、额外特征作为输入,构造完整的全矢机器学习模型,同时构造单通道极限学习模型进行对比,实验表明:基于全矢机器学习的模型不平衡故障的识别能力要高于单通道模型。使用实验数据和噪声数据对两种模型进行测试,结果表明全矢机器学习故障诊断模型对实验数据的适应能力强,抗噪声能力相比单通道数据要好,但在信噪比低于1时表现不佳。针对全矢机器学习算法对噪声信号很强时识别不准问题和输入特征的冗余问题,针对噪声信号使用EEMD算法滤波,针对冗余特征使用遗传算法GA对特征进行优化,去掉不必要的冗余特征,提出遗传算法结合相关性特征选择的转子不平衡故障特征优化方法,对特征进行筛选,降低特征间的冗余性,显著提高运算效率。同时为弥补诊断准确率下降的问题,提出遗传算法加权ELM的不平衡故障特征优化方法,通过添加权重系数,减少特征量之间由于大小相差过大导致的误差。实验结果表明,该方法可显著提高不平衡故障的准确率和计算效率。
其他文献
姿态作为重要的导航参数,随着智能驾驶、无人机和无人车等技术的兴起,得到了越来越多的重视。在基于不同传感器的测姿技术中,GNSS测姿具有全天候、精度高和误差不随时间累积的优势,但在挑战环境下,测姿精度、连续性和可靠性会迅速降低。MEMS惯性(简称MEMS)测姿则具有低成本、体积小,自主无源的优点,将GNSS与MEMS两者进行信息融合可实现优势互补,获得更好的测姿结果。根据GNSS天线的数量,GNSS
数字隐写技术是保障通信安全的重要手段,但也为恶意的非法通信提供了便利。隐写分析技术作为隐写术的对抗手段,其目的是检测信号中是否嵌有秘密信息,在这个注重信息安全的时代具有重要的研究意义。数字音频是人们生活中常用的数字媒体之一。音频应用与音频处理软件的普及极大地促进了音频隐写和隐写分析技术的发展。在复杂的大数据取证场景下,音频数据通常具有多样性和复杂性,攻击者使用的载体数据模型和隐写算法通常是未知的,
特征匹配作为计算机技术和人工智能中一项基本的图像处理技术,在许多计算机视觉应用中都扮演着关键的角色,比如图像检索、图像配准、三维重建等。随着计算机技术和人工智能在人类日常生活中日益广泛的应用,人类对特征匹配技术的有效性、稳定性和泛化能力都有着更加迫切的要求。在特征匹配过程中,如何确定两个特征属于同一目标是非常困难的,特别是在匹配特征在外观上非常不相似,而非匹配特征又特别相似的情况下。因此,设计一个
随着地球人口膨胀、陆地资源短缺、生态环境恶化等情况的加剧,人类逐渐将目光聚焦于占地球表面积71%的海洋。水下图像在海洋生物研究、海底资源勘探、海洋军事应用和水下考古等领域起着关键作用,具有重要的研究价值。水下图像相比声学图像具有更加丰富的细节和色彩信息,在水下科考和工程实践中具有不可替代的地位。高质量的水下图像既满足了人们的视觉感知需求,又有助于高层视觉的应用。然而,由于水下成像环境的独特性和复杂
随着人们日常生活水平的提升与人工智能技术的迅速发展,越来越多的智能家居系统、人工智能机器人等高科技产品进入人们的生活中。手势交互作为指令下达最为简洁、便利的人机交互方式之一,一直是计算机领域的研究热点。相较于穿戴比较繁琐且设备价格高昂的穿戴式手势识别技术,基于视频信息的动态手势识别技术则更为大众所接受。近年来,深度神经网络以强大的特征提取能力以及模型泛化能力在手势识别领域取得了较好的成绩。本文深入
在有机光伏材料中,单线态分裂是一种在特定有机分子中发生的激发倍增现象,即分子吸收一个光子可以产生两个电子空穴对。作为一种多激子效应,单线态分裂可以有效地避免能量损失,提高太阳能电池的光电转换效率。近年来,随着超短激光脉冲和时间分辨技术的出现和发展,科研工作者们对单线态分裂的研究不断深入,然而其物理实质还有待进一步揭示。红荧烯作为常见的单线态分裂材料,其单晶、多晶、薄膜的单线态分裂研究层出不穷,但是
随着社会的发展和科技的进步,数字音频已经成为人们日常生活主流的信息载体。由于Cool Edit、Cakewalk以及Audition CS6等音频处理软件的广泛应用,人们肆意伪造或者篡改数字音频的行为也日渐增多。随着数字音频面临日益严重的信任危机,近年来国内外涌现出很多数字音频取证技术的研究。数字音频取证技术是通过解决数字音频的真实性、完整性以及原始性等安全问题,以达到保障数字音频安全性的目的。截
现阶段5G技术的发展日新月异,5G商用未来可期,面对当下5G三大业务场景的广大需求,中国移动创新提出SPN(Slicing Packet Network,切片分组网)网络架构应对5G全新应用场景需求,各个通信设备制造商遵循移动提出的SPN技术标准,致力于研发SPN设备,满足移动SPN设备测试规范的要求。SPN采用分层网络模型,分为切片分组层(Slicing Packet Layer,SPL)、切分
三维石墨烯虽然具有快速的充电速率、长的循环寿命、丰富的孔径结构和高的电导率等优异性质,但由于其比电容较低,较大程度的制约了其在超级电容器中的应用。将聚苯胺(PANI)与三维石墨烯复合可以提高其比电容,但由于聚苯胺与石墨烯的界面接合较弱,这会影响该类复合电极材料的电化学性能。针对这一问题,本文提出采用功能化修饰方法,用氨基(-NH2)、磺酸基(-SO3H)对三维石墨烯进行表面功能化修饰,调控聚苯胺与
近年来,随着智能手机与平板电脑等移动设备的普及,运行在移动设备上的应用程序(app)的数量也急剧增加。目前,移动设备上的移动应用程序市场内已经拥有数百万的移动应用。如此规模的移动应用的维护对于开发人员来说是一个巨大的挑战。开发人员通常需要通过软件维护方法来保证移动应用程序的质量,从而提高用户的满意度。他们通常会提交问题报告来描述在使用应用程序的过程中出现的缺陷,功能请求和其他更改。标签(例如,缺陷