【摘 要】
:
随着可再生能源的发展,改善能源结构,增加可再生能源利用率,已成为目前电力系统发展的重要趋势。由于风电、光伏功率存在波动性、间歇性与随机性,如何利用多种能源互补发电技术,平抑可再生能源波动已经成为一个重要的研究课题。因此,对于解决平抑风电、光伏功率波动相关问题的研究具有重要的应用意义。本文深入研究了基于水电、光伏以及抽水蓄能构成的水-光-蓄互补发电系统的优化运行策略以及实时协调控制策略,以及光伏发电
论文部分内容阅读
随着可再生能源的发展,改善能源结构,增加可再生能源利用率,已成为目前电力系统发展的重要趋势。由于风电、光伏功率存在波动性、间歇性与随机性,如何利用多种能源互补发电技术,平抑可再生能源波动已经成为一个重要的研究课题。因此,对于解决平抑风电、光伏功率波动相关问题的研究具有重要的应用意义。本文深入研究了基于水电、光伏以及抽水蓄能构成的水-光-蓄互补发电系统的优化运行策略以及实时协调控制策略,以及光伏发电功率及负荷功率预测方法等问题,具体的研究工作如下:建立了水电机组模型、光伏发电系统模型及全功率变速恒频抽蓄机组模型,全功率变速恒频抽蓄机组通过全功率变流器将发电电动机与电网相连,可实现变速恒频运行,其具有更强的灵活性;并确定了水-光-蓄互补发电系统结构以及其控制架构。研究了光伏发电功率及负荷功率预测。分别建立了基于轻量型梯度提升机预测算法的短期光伏功率预测及短期负荷功率预测模型,模型在保证准确度的基础上,具有较高的效率及较强的可扩展性;建立了基于改进滑动平均算法的超短期光伏功率预测模型,具有较强的实时性。利用实际算例对模型进行了仿真计算,验证了模型的有效性。在考虑水光互补特性及集中式水-光-蓄互补发电系统特性的基础上,研究了水-光-蓄互补发电系统优化运行策略。分别建立了以互补发电系统总出力波动最小以及互补发电系统发电收益最大为目标,包含水电站出力、抽蓄电站出力、水库容量水位等约束条件的系统优化运行模型,采用遗传算法进行模型求解。利用实际算例进行了仿真计算,验证了算法的实用性。针对光伏功率波动平抑问题,提出了水-光-蓄互补系统实时协调控制策略,该策略基于经验模态分解法计算全功率变速恒频抽蓄机组及小水电机组参与平抑光伏功率波动的补偿功率,在光伏功率出现波动时,控制全功率变速恒频抽蓄机组和水电机组快速响应,提供补偿功率,实现光伏功率平稳并网。另外提出了基于光伏输出功率增速控制的平抑光伏出力波动策略,可减少抽蓄机组快速调节出力的次数。利用实际算例进行了仿真计算,验证了策略的有效性和可行性。
其他文献
构建可引导的电动汽车柔性负荷资源,充分挖掘需求侧响应潜力,是提高电力系统经济稳定运行的重要手段之一。本文在分析了电动汽车用户充电行为规律和决策行为机理的基础上,提出了一种需求响应下的分时充电服务费制定策略。通过价格信号引导用户有序充电,不仅可以降低用户充电费用,还能提高电网资产运行效率和充电站收益,促进“车-网-站”三者之间的良好互动。具体研究内容如下:(1)基于充电站充电记录数据,采用边界修正后
随着能源紧缺和环境污染问题日益突出,大规模新能源发电及储能系统得到了快速发展和应用。在此大背景下,可将新能源发电系统广泛接入电网,且易于实现能源消费结构转型及电能智能化控制的能源互联网应运而生。作为能源互联网的核心设备之一,电力电子能量路由器(electrical energy router,EER)具有高低压侧电气隔离、功率双向传输、多电压等级接口、便于新能源及储能设备接入等诸多优势。因此,本文
人口老龄化加剧是我国当今面临的严重社会问题,因此老化研究显得尤为必要。伴随衰老的重要变化之一就是脑功能的退化,以及随之而来的行为能力的退化。然而目前针对成人脑老化全阶段的研究还不够全面和深入,对成人发育和老化过程中脑功能连接和行为能力的个体差异的变化的理解尚不够。提出并完善健康脑老化模型,能够为老化相关精神疾病以及脑退行性疾病的研究提供理论基础,进而推进临床诊断。为此,本研究开展了基于脑网络表征学
地表水体的氮污染治理已成为国内外热点。针对有机碳不足的低碳氮比(COD/TN)水质特征,自养/异养耦合反硝化工艺已成为地表水氮污染修复的热门技术。然而在自养/异养耦合反硝化体系中,自养反硝化菌与异养反硝化菌并非各自独立完成反硝化作用,其耦合作用机制尚不清楚。本研究以硫铁矿自养/异养耦合反应器运行为基础,同时建立自养/异养耦合微生物个体生长模型(Newcastle University Fronti
大力发展可再生能源是解决能源短缺问题的必然途径,借助交直流微电网将可再生能源汇集利用成为研究热点之一。交直流微电网实现电能变换及电压等级的灵活转换通常需要不同的电力电子变换器级联,但级联变换器之间相互作用会给系统的稳定性造成不利影响,降低电能质量及安全性。双有源全桥DC-DC(Dual active bridge,DAB)变换器电压变换灵活、硬件结构简单、性能可靠安全,其与三相逆变器级联适用于中大
多层瓷介电容器(Multilayer Ceramic Capacitors,MLCC)是当前应用最为广泛的无源元器件之一,其由于体积小、容量大、稳定性强、易安装等优点,在航空航天、汽车、船舶、信息等领域中有着广泛的应用。目前,MLCC电学性能方面已有了大量试验与EDA(Electronic Design Automation)仿真结合的研究成果,但对于其力学性能研究,仍以试验为主,存在定量分析困难
起初,锂离子电池因其轻质、良好的循环寿命、能量密度高等优点而广泛用于电动汽车中,随着锂离子电池的不断发展近年来逐渐应用到轨道交通领域。在轨道交通锂离子电池储能系统中,电池组通常与DC-DC变换器连接来控制能量流动。由于DC-DC变换器在工作时会产生高频噪声和电流纹波,就使得锂离子电池在充放电过程中受到高频激励。因此,研究锂离子电池在高频时的电压响应特性并建立准确的电池模型对于电池管理系统和DC-D
多相星形无刷励磁机作为大容量核电机组的重要组成部分,能够为发电机提供高品质的励磁电流。励磁绕组匝间短路故障是励磁机的常见故障,实现对该故障的在线监测对保障核电机组的安全稳定运行具有重要意义。针对多相星形无刷励磁机转枢式的结构,可以通过定子励磁电流的谐波特征实现故障的有效监测。本文针对核电多相星形无刷励磁机励磁绕组匝间短路故障展开了数学建模、仿真分析、故障特征机理分析以及故障在线监测装置等一系列研究
锂离子电池作为21世纪的明星储能装置具有众多优势(比容量大、绿色环保等),并且已经实现了大规模商业应用。负极材料对锂电池能完成良好的综合性能发挥可以起到关键性的作用。石墨是目前储能市场的宠儿,商用负极材料的首选,但市场需求随着社会发展在不断扩大,石墨由于材料自身的限制(容量的理论极限值仅为372 m Ah g-1)已经很难有足够的能力使激增的市场需求量得到满足,所以开发循环容量高的负极材料对于储能
随随着能源枯竭与环境污染问题的日益加剧,可再生能源愈发受到关注。波浪能有着分布广、储量大、可利用率高等优势,具有良好的可开发利用前景。我国拥有广袤的海域面积和绵延的海岸线,具有得天独厚的开发优势。本文围绕波浪能发电,对其中的液压蓄能环节、发电环节及电力变换环节做重点研究,主要工作内容如下:面向液压蓄能式波浪能发电系统(Hydraulic Energy-Storage Wave Energy Gen