基于模糊聚类的尿沉渣有形成分分析研究

来源 :南京信息工程大学 | 被引量 : 5次 | 上传用户:cbg668
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
尿沉渣图像检验作为临床上病理分析的重要依据,已经成为医学研究讨论的重要话题。尿有形成分检查的重要性在于它是尿液分析中不可缺少的检查手段,对临床诊断、治疗监测及健康普查具有重要的临床意义,对肾脏疾病、泌尿道疾病、循环系统疾病以及感染性疾病等,有重要的诊断和鉴别作用,尿沉渣图像检验以及其有形成分分析的准确性和分析速度的快慢就成为尿沉渣图像研究的焦点问题。很显然,以往的人工肉眼检验尿沉渣图像有形成分的准确率的确比较高。可是各大医院做尿检的份额原本就惊人,更可怕的是尿沉渣图像中成分繁多,个体目标也是复杂多变,人工分析难以满足要求。借助图像处理技术实现自动分析是解决这一问题的好办法。全自动尿沉渣分析仪是一种高智能、全自动、客观的基于计算机显微图像的尿液有形成份分析仪器。它集计算机技术、精密机械技术、光学显微成像技术、自动控制技术、数字图像处理与机器视觉技术于一体。而这其中,数字图像的处理和理解是核心技术之一。尿沉渣有形成分的模式识别方法有多种,如人工神经网络识别,支持向量机识别,贝叶斯方法等等。但是这些方法无一例外采用是的线性的识别方法。本文所述的方法中没有要求对每个尿沉渣个体进行识别,而是首先提取了目标的5个形态特征和12个纹理特征。以这些特征参数为依据,用模糊聚类的方法将所有的目标聚成几类。聚类分析是一种典型的数据挖掘和分析的方法,其中关于聚类类别的最终确定采用了F-统计量法。聚类之后的所有类不可能是没有杂类元素的纯类,用类间阈值分割(Ostu)法可以去除一些类中与大多数个体相似度较低的元素,并且把它们加入到待定集合当中。这样做的目的一是保证后面给每类定性时的准确率,二是将这些不定元素可以进行重新识别以提高准确率。然后将每类中被抽取出来的元素经过神经网络的检验,由它们代表整个类来给类定性是红细胞、白细胞、管型、还是其它结晶。最后对处于待定集合中的个体进行重新识别,以提高识别准确率。经过数据实验和仿真证明了该方法的可行性和有效性。对于大小面积差异明显的个体准确率较高,如管型和上皮细胞。草酸钙结品的纹理特征明显,该法也有一定优势。对于差异较小的红细胞和白细胞则效果一般。
其他文献
随机共振研究中经常假设噪声为白噪声,这种假设非常理想化,因为实际问题中噪声都是有色噪声,研究也表明有色噪声比白噪声更能增强非线性系统对弱信号的响应。基于以上观点,本文分析了微弱信号条件下非线性滤波器输出信噪比,给出了最优滤波器性能与Fisher信息量的关系,还推导了给定系统传递函数时最大信噪比公式,此公式不仅适用于白噪声假设,还适合有色噪声。我们利用一阶滑动平均模型产生的有色高斯混合噪声模型,依据
本文以造纸机电气传动控制系统三级控制模式为基础,分析了系统的可靠性以及各个控制要素对可靠性设计的影响,研究了纸机电控系统的故障树分析,从硬件线路和软件程序两方面分别提
学位
环境污染与能源安全问题已成为当今社会面临的两个主要问题,而电动汽车的出现为解决这两个问题提供了重要手段。电动汽车替代传统能源汽车,利于减小汽车尾气造成的大气污染,
排序论是运筹学的一个非常重要的分支.供应链排序是将供应链管理与排序理论相结合产生的新领域,将生产调度和运输整合进行研究,使整体目标达到最优.本文主要研究对半成品工件