论文部分内容阅读
变形区的应力应变对纤维增强铝基复合材料的性能具有重要的影响,但是直观地检测和分析应力应变仍然是比较困难的。稀土离子的荧光谱线丰富、发射强度高,易于寻峰,为荧光光谱法测量应力所需力敏特性材料的选择提供了更多的可能性。本课题研究中,通过静电纺丝法将稀土离子(Tb3+、Eu3+)作为发光中心掺杂到YAG-Al2O3复合纳米短纤维中,分别制备了Tb3+掺杂和Eu3+掺杂的YAG-Al2O3荧光复合纳米短纤维(以下将Tb3+掺杂的YAG-Al2O3荧光纳米纤维和Eu3+掺杂的YAG-Al2O3复合纳米纤维分别简称为(YAG:Tb3+-Al2O3)csf和(YAG:Eu3+-Al2O3)csf),使YAG-Al2O3增强纤维光功能化。然后将荧光纤维与铝合金粉末混合并烧结形成纤维增强的铝基复合材料(以下将(YAG:Tb3+-Al2O3)csf增强的铝基复合材料简称为(YAG:Tb3+-Al2O3)csf/Al复合材料,(YAG:Eu3+-Al2O3)csf增强的铝基复合材料简称为(YAG:Eu3+-Al2O3)csf/Al复合材料)。研究了纤维添加量对复合材料力学性能的影响,并通过光谱响应研究了荧光纤维增强铝基复合材料在不同拉应力下发射光谱的变化,分析了光谱变化与拉应力的响应关系,简要阐述了纤维的荧光发射峰频移对拉应力的响应机制。主要研究结果如下:(1)采用静电纺丝法将不同含量的Tb3+/Eu3+掺杂到YAG-Al2O3复合纳米纤维。研究了荧光纳米纤维晶体结构、微观组织以及发光性能。当Tb3+/Eu3+的添加量为5 mol.%时,荧光纤维(YAG:Tb3+-Al2O3)csf和(YAG:Eu3+-Al2O3)csf均表现出更强的发光特性。(YAG:Tb3+-Al2O3)csf的发射光谱在543 nm处发射出绿光,属于Tb3+的5D4-7F5跃迁。(YAG:Eu3+-Al2O3)csf的发射光谱表现出Eu3+的5D0-7FJ(J=0,1,2,3,4)跃迁,波长592 nm处为强橙红色发射。(2)将(YAG:Tb3+-Al2O3)csf与铝合金基体复合,研究了(YAG:Tb3+-Al2O3)csf对铝基复合材料致密度、抗拉强度、硬度等力学性能的影响。当(YAG:Tb3+-Al2O3)csf的添加量为1 wt.%,(YAG:Tb3+-Al2O3)csf/Al复合材料的极限抗拉强度(UST)为300.1 MPa。以(YAG:Tb3+-Al2O3)csf/Al复合材料荧光发射光谱带重心波长作为拉应力传感信号,得到的应力传感方程为λ=546.6817-0.0042σ,灵敏度为0.0042 nm/MPa。谱带重心波长随拉应力发生明显的蓝移现象。(3)(YAG:Eu3+-Al2O3)csf/Al复合材料具有应力敏感特性。随着拉应力的增加,荧光发射光谱带重心波长发生红移。复合材料的荧光发射光谱的重心波长与拉应力具有良好的线性关系,应力传感方程为λ=594.69539+0.01437σ,拟合优度为0.99895。(YAG:Eu3+-Al2O3)csf/Al复合材料在拉应力下的频移系数为0.40523 cm-1/MPa,约为标准红宝石荧光材料压力系数(5.5 cm-1/GPa)的73倍。(4)荧光发射谱带重心波长可以作为力敏信号进行拉应力的传感。相同实验条件和拉应力范围内,(YAG:Eu3+-Al2O3)csf/Al复合材料表现出更高的拉应力传感精度,且(YAG:Eu3+-Al2O3)csf的频移系数是(YAG:Tb3+-Al2O3)csf的34倍。因此,将Eu3+的5D0→7F1电子跃迁的重心波长随拉应力的变化可用于应力传感,在一定程度上表征复合材料的内应力。