热处理工艺对热轧/冷轧中锰钢微观组织和力学性能的影响

来源 :东北大学 | 被引量 : 0次 | 上传用户:wuwenwu321
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着汽车工业的快速发展,汽车在给我们带来便利的同时,也引起了能源、安全与环保等方面的问题,而汽车轻量化是解决这些问题的主要途径之一。先进高强钢能保证汽车轻量化,又能提升和保证汽车安全性的性价比高的现代汽车制造材料,因此加快汽车用先进高强钢的研发具有重要的现实意义。中锰钢(Mn:4~12 wt.%)在抗拉强度高达1000MPa的同时,仍具有高的拉伸塑性(≥30%)和加工硬化能力,已成为近年来钢铁材料领域的研究热点之一。基于热力学软件模拟和层错能计算优化合金设计,本文确定了合理的中锰TRIP/TWIP钢的化学成分;结合热轧、冷轧与热处理工艺,系统研究了典型中锰钢(0.3C-10Mn-4Al-0.5Si,wt.%)的微观组织演变和力学性能的演变规律;通过优化工艺制度,在该成分的中锰钢中实现了 TRIP+TWIP的耦合效应,讨论与分析了中锰TRIP/TWIP钢在室温拉伸过程中的塑性变形机制。主要研究内容与成果如下:(1)对于热轧态中锰钢,随着退火温度升高,残余奥氏体的体积分数呈先增加后降低的趋势。经750℃退火60 min后,残余奥氏体的体积分数达到最大值,约为62.3%;微观组织主要由针状+条状的残余奥氏体、长条状的δ-铁素体以及针状铁素体组成,综合力学性能最佳:抗拉强度>1000MPa&延伸率~30%;保温时间对力学性能的影响不大。(2)热轧实验钢经深冷处理后,晶粒明显细化,部分层状铁素体+奥氏体转变为等轴状。深冷处理后实验钢的拉伸曲线均呈连续屈服特征,与常规热处理相比,延伸率提高了近一倍,高达50~60%,抗拉强度在950~1000 MPa之间,强塑积约为45~59 GPa.%。(3)对于冷轧态中锰钢,随着退火温度升高,残余奥氏体的体积分数呈先增加后降低的趋势;经800℃退火10 min后,残余奥氏体的体积分数达最大值,约为61.8%,微观组织主要由层状+等轴状的奥氏体、铁素体组成,综合力学性能最佳:抗拉强度接近1000 MPa,延伸率约为50%,强塑积为48 GPa·%。(4)研究了典型工艺条件下(800℃退火)冷轧态高强塑积中锰钢的变形机制。结果表明,在拉伸变形条件下,变形组织中位错密度增加,残余奥氏体发生了马氏体相变,诱发TRIP效应;随着应变量的增加,可观察到变形孪晶,证实发生了 TWIP效应。这种TRIP/TWIP耦合效应使得冷轧中锰钢兼具高强度和高塑性。
其他文献
JIT是日本丰田汽车公司在20世纪60年代实行的一种生产方式,即一种在多品种小批量混合生产条件下高质量、低消耗的生产方式。JIT的基本理念是严格按照用户要求生产产品,减少生产周期,降低在制品库存,提高效率并降低成本。即必须在所需时间以所需量生产所需产品,不要过早地生产不必要的产品。供应链管理(SCM)是一种新的管理方法,由于公司运营环境的根本变化而产生。供应链管理是指供应链中的公司及其自身的供应商
本论文是以251相稀土无机层状化合物为研究主体,利用其独特的可插层性和可剥离性,采用十二烷基磺酸钠对其进行插层柱撑,并于甲酰胺环境中进行剥离,得到纳米级二维片状材料,将纳米片通过离子交换反应与基片或其他物质复合,构筑出光功能薄膜。通过XRD、SEM、TEM、FT-IR、PL/PLE、UV-Vis、瞬态荧光寿命测试等检测手段,可以得到如下结论:以稀土硝酸盐为母盐、硝酸氨或硝酸钠为矿化剂、氨水为沉淀剂
搅拌摩擦焊接(Friction Stir Welding,简称FSW)/搅拌摩擦加工(Friction Stir Processing,简称FSP)的原理是由轴肩和搅拌针组成的焊接工具/搅拌头高速旋转将搅拌针挤入工件,通过搅拌工具与工件表面摩擦使工件局部升温软化产生强烈塑性变形和充分混合,并通过动态再结晶过程形成具有细晶组织特征的焊缝区/加工区(又称搅拌区)。一般情况下,铝合金FSW/FSP搅拌区
铝锂合金具有高强度、低密度,良好的强度与韧性匹配,各向异性小,热稳定性好,同时具有良好的耐腐蚀和加工成形性,是经过实际应用验证的重要航空材料,大量应用于飞机机身蒙皮、地板梁与支柱中。目前,铝锂合金都采用常规的铸造+热轧工艺生产,工艺流程长,生产效率低,能耗大。采用铸轧工艺制备铝锂合金板材可以缩短工艺流程,节省生产成本,同时提高铝锂合金板带的性能。本文采用数值模拟的方法对铝锂合金板带连续铸轧过程的温
热连轧精轧过程是钢铁工业生产过程的重要组成部分,对带钢的几何尺寸、机械性能以及表面质量等方面的要求都十分严格,其中带钢厚度是衡量带钢产品质量的重要指标,虽然目前大多数热连轧生产线均采用多种自动控制系统,但是由于其生产工况恶劣,轧制工艺复杂,同时还存在着各类扰动。传统的控制方法将带钢出口厚度、活套角度和机架间带钢张力作为单独的子系统分别(或者将活套角度和带钢张力作为一个子系统)进行控制,无法协调处理
电化学分解水制氢是可以有效缓解目前能源危机的重要手段,其中,制备高活性、高稳定性氧析出(oxygen evolution reaction,OER)催化剂是促进电催化水分解技术实用化的关键。由于贵金属基催化剂存在储量低、价格昂贵等缺点,使其难以被广泛应用,因此开发储量丰富、价格低廉的高活性/高稳定性的电催化材料成为目前的研究热点。普鲁士蓝类似物(PBA),由于其具有大的比表面积、以及可调控的金属中
镀锡板俗称马口铁,具有无毒、强度高、耐腐蚀等特点,被广泛用于各种容器、食品包装、包装材料及冲压制品,是国际上公认的绿色环保包装。然而,随着塑料和纸质包装材料的兴起,以及铝材和无锡(镀铬、镀镍)板的发展和应用,镀锡板在包装市场上面临着很大的挑战,比如为降低成本,需要进一步降低镀锡板的厚度,并提高其强度。因此,开发两片罐用极薄食品级镀锡板关键生产技术已成为提高企业核心竞争力的有效途径,且市场潜力巨大。
镁合金具有高的比强度、低密度以及优异的减震性能等优点,在航天航空领域具有广泛的应用前景。但镁合金的强度低、塑性差仍是阻碍其工业化应用的主要原因。本文通过Ce的微合金化设计以及工艺参数优化制备出性能优异的Mg-Al和Mg-Ca系合金,包括高强度的Mg-Al-Ce、Mg-Ca-Ce以及Mg-Ca-Ce-Mn合金等。基于微观组织分析与力学性能测试,得到以下主要结果:为提高Mg-Al系合金的力学性能,首先
在钢铁生产过程中,钢坯加热及轧后冷却是极其重要的工艺环节。在此过程中,材料的温度场及微观组织都会产生较大的变化,对其最终的质量起着至关重要的作用。因此,对于加热及轧后冷却工艺的制定及优化具有十分重要的理论意义和实用价值。本文利用有限元分析方法模拟了钢坯加热及轧后冷却过程的温度场,建立了轧后冷却过程中组织演变的预测模型,并利用人工神经网络方法建立了温度场及轧后冷却过程中微观组织演变的智能化预测模型。
针对钛合金结构件因摩擦磨损易导致表面及内部产生裂纹而失效问题,本文主要以钛合金为研究对象,主要对不同载荷、速度、钛合金基体硬度条件下,对钛合金摩擦磨损性能及亚表面裂纹扩展机制的影响进行了研究。通过超景深显微镜观察磨痕表面形貌的变化特征,用激光共聚焦显微镜研究了不同实验条件下磨痕表面附近的微观组织演化规律,结合钛合金摩擦系数和磨损率的变化过程,揭示了钛合金在不同环境下的摩擦磨损机制。本文的主要研究内