局部间断Galerkin方法的误差估计

来源 :南京大学 | 被引量 : 2次 | 上传用户:liongliong532
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
发展型对流扩散方程具有广泛的应用背景,相应的数值求解方法研究一直备受关注。局部间断有限元(Local discontinuous Galerkin,简称LDG)方法是目前非常流行的数值方法之一,具有良好的数值稳定性和高阶精度。在本论文中,我们将考虑典型的一维和二维对流扩散方程,建立相应LDG方法的丰满阶误差估计。主要结论包括两个内容。其一是数值流通量的具体设置更具一般性。换言之,我们将考虑广义的交替型数值流通量。其二是“双丰满”的局部误差估计。  论文共分七章。第一章是对流扩散方程及其LDG方法的简要回顾,最后一章是总结和展望。余下五章是本文的主体,具体内容如下:  在第二章,我们将考虑一维的线性对流扩散问题,并假设相应的真解在全局区域上是充分光滑的。基于广义交替数值流通量,我们将证明相应的LDG方法依旧具有丰满阶的整体L2模误差估计。为此,我们将采用最新发展起来的一个整体投影,称之为广义Gauss-Radau(GGR)投影,给出完整的理论证明。在这个过程中,我们完善了GGR投影的最优逼近性质对投影函数所需的光滑性要求。  在第三章,我们将前面的工作推广到二维对流扩散问题的LDG方法研究。为简单起见,设有限元空间是基于矩形网格的双k次分片多项式空间。若LDG方法采用广义的交替型数值流通量,我们将理论证明其依旧具有丰满阶的整体L2模误差估计。证明的主要工具依旧是二维的GGR投影,但是维数的增加,使得我们在误差估计中,不能将单元边界误差消去,也不能利用内部单元的投影正交性。为此,我们需要建立二维GGR投影对于整体DG空间离散算子的超收敛性质。同原始的局部Gauss-Radau投影相比,该结论的证明路线具有明显的区别。  从第四章开始,我们将讨论LDG方法的局部误差估计。第四章考虑具有边界层的一维奇异摄动问题。由于真解在狭窄的边界层内呈现出大梯度的急剧变化,前面的整体误差估计失去理论指导价值。为了突出LDG方法的数值求解优势,我们需要开展相应的局部分析。本文的目标是建立LDG方法的“双最优”误差估计结果。换言之,受到边界层影响的污染区域具有拟最优的宽度,并且污染区域外的L2模误差依旧是丰满的。为完成相关证明,我们需要引进一个特殊的权函数,开展相应的带权能量分析。关键技术主要有三。其一是,借用局部L2投影技术,建立相应的加权L2模稳定性;其二是,利用Dirichlet边界条件下的GGR投影技术;其三是,利用真解的正则性假设,具体设置权函数中的参数。  在第五章,我们考虑一维奇异摄动问题的全离散LDG方法,其中时间采用二阶和三阶全变差不增的显式Runge-Kutta方法。分析的关键是对时间离散信息的有效控制。由于稳定性机制略有不同,基于上述两种时间离散技术的LDG全离散方法,具有明显不同的局部误差估计过程。  在第六章,我们考虑二维奇异摄动问题LDG方法的“双最优”局部误差估计,其中我们采用了具有完全交替数值流通量的半离散LDG方法。此时分析的关键是建立二维GR投影的加权超收敛性质。
其他文献
Hamilton-Jacobi方程的粘性解理论在变分法、最优控制以及微分博弈论等领域都有迅猛的发展,我们试图将其在PDE和控制论中的数学方法与Hamilton-Lagrange动力学的研究相结合。