论文部分内容阅读
为解决特高压故障大功率缺失与可再生能源高渗透率带来的电网频率稳定问题,需要对种类不断丰富的频率响应调节手段进行更好地协调,这就使得现行频率响应的调节方式表现出一定的局限性。鉴于目前我国现有电力系统安全稳定控制框架已具备了先进的通信技术与完善的控制系统,有必要利用已有安全稳定控制框架,在不增加通信设备、信道等硬件设施的基础上,提出新的频率响应控制方式。
本文针对广域电网较为显著的频率时空分布特征,提出一种主动频率响应控制思想与框架,将频率响应控制由传统的依据本地频差调节的分散比例反馈控制,转变为依据故障处参量动作的集中事件(或参量)前馈控制,通过对“源-网-荷-储”侧多种频率响应调节手段进行优化协调充分发挥已有设备控制效能,提升系统频率稳定控制能力,进而改善大功率缺失下的系统频率稳定紧张局面。
所提主动频率响应控制框架包括离线分析与在线应用两个部分。其中,离线分析主要涉及典型场景生成、频率安全程度分级、同调机群辨识三项内容,通过依据电网历史运行数据生成典型场景,针对典型场景划分频率安全等级,与对频率安全水平较低的场景进行同调机组分群,降低离线分析工作量,满足频率响应在线控制的快速性需求;在线应用主要针对主动频率响应模型预测控制策略展开研究,通过将当前运行状态与离线分析所得典型场景进行在线匹配,对系统内多种频率响应调节手段进行集中协调与控制,充分发挥系统整体频率响应能力。各项内容研究具体如下:
通过将频率最低点作为场景聚类输入,综合考虑各系统参量作用效果;通过采用改进模糊C均值聚类算法,依据聚类有效性指标与频率安全原则对运行场景进行聚类与优选,解决主动频率响应控制所面临的运行场景数目巨大且控制策略涉及因素众多问题,从而在保证控制精度的前提下提高控制效率。
通过明确系统频率最低点与准稳态频率间的近似定比值关系,依据准稳态频率使用历史数据线性回归方法估算系统频率最低点;通过在考虑机组上调裕量、系统初始运行频率等因素下,提出电网频率安全程度分级原则,依据频率最低点实时评估系统频率安全等级与实际频率响应能力,进而为频率响应控制模式的选取与频率响应调节手段的调用提供理论依据。
通过将频率作为机组同调分群依据,综合考虑系统模型参数、运行方式、扰动位置等对分群结果的影响;通过采用支持向量聚类算法,将机组频差时间序列低维空间分布映射到高维特征空间,借助序列最小优化算法计算高维特征空间中数据的最小包围超球半径,进而依据同调机群疏密度评估指标进行同调机群辨识。采用主动频率响应分群控制,不仅对系统频率最低点影响不大,而且能够将距扰动点较远机组的暂态最高频率控制在系统频率安全约束范围内,使系统避免发生新的频率安全稳定问题。
通过采用模型预测控制进行主动频率响应控制,既可以克服现有频率响应延迟引起的控制滞后问题,综合考虑各频率响应调节手段调节特性与系统运行约束,又能在保证系统运行安全的前提下,对各频率响应调节手段输出功率进行集中协调与控制,充分发挥系统整体频率响应能力,进而提升大功率缺失下的系统频率稳定抵御能力。对被控频率响应调节手段与扰动点间电气距离的分析表明,该方法在距扰动点一定距离的区域内实施可收到预期效果。
我国现有电力系统安全稳定控制框架已为上述各项研究提供了理论基础与实施基础,本文研究无需新增通信设备、信道、稳控系统等硬件设施,且算例研究表明所提方法已具备一定的可行性与有效性。
本文针对广域电网较为显著的频率时空分布特征,提出一种主动频率响应控制思想与框架,将频率响应控制由传统的依据本地频差调节的分散比例反馈控制,转变为依据故障处参量动作的集中事件(或参量)前馈控制,通过对“源-网-荷-储”侧多种频率响应调节手段进行优化协调充分发挥已有设备控制效能,提升系统频率稳定控制能力,进而改善大功率缺失下的系统频率稳定紧张局面。
所提主动频率响应控制框架包括离线分析与在线应用两个部分。其中,离线分析主要涉及典型场景生成、频率安全程度分级、同调机群辨识三项内容,通过依据电网历史运行数据生成典型场景,针对典型场景划分频率安全等级,与对频率安全水平较低的场景进行同调机组分群,降低离线分析工作量,满足频率响应在线控制的快速性需求;在线应用主要针对主动频率响应模型预测控制策略展开研究,通过将当前运行状态与离线分析所得典型场景进行在线匹配,对系统内多种频率响应调节手段进行集中协调与控制,充分发挥系统整体频率响应能力。各项内容研究具体如下:
通过将频率最低点作为场景聚类输入,综合考虑各系统参量作用效果;通过采用改进模糊C均值聚类算法,依据聚类有效性指标与频率安全原则对运行场景进行聚类与优选,解决主动频率响应控制所面临的运行场景数目巨大且控制策略涉及因素众多问题,从而在保证控制精度的前提下提高控制效率。
通过明确系统频率最低点与准稳态频率间的近似定比值关系,依据准稳态频率使用历史数据线性回归方法估算系统频率最低点;通过在考虑机组上调裕量、系统初始运行频率等因素下,提出电网频率安全程度分级原则,依据频率最低点实时评估系统频率安全等级与实际频率响应能力,进而为频率响应控制模式的选取与频率响应调节手段的调用提供理论依据。
通过将频率作为机组同调分群依据,综合考虑系统模型参数、运行方式、扰动位置等对分群结果的影响;通过采用支持向量聚类算法,将机组频差时间序列低维空间分布映射到高维特征空间,借助序列最小优化算法计算高维特征空间中数据的最小包围超球半径,进而依据同调机群疏密度评估指标进行同调机群辨识。采用主动频率响应分群控制,不仅对系统频率最低点影响不大,而且能够将距扰动点较远机组的暂态最高频率控制在系统频率安全约束范围内,使系统避免发生新的频率安全稳定问题。
通过采用模型预测控制进行主动频率响应控制,既可以克服现有频率响应延迟引起的控制滞后问题,综合考虑各频率响应调节手段调节特性与系统运行约束,又能在保证系统运行安全的前提下,对各频率响应调节手段输出功率进行集中协调与控制,充分发挥系统整体频率响应能力,进而提升大功率缺失下的系统频率稳定抵御能力。对被控频率响应调节手段与扰动点间电气距离的分析表明,该方法在距扰动点一定距离的区域内实施可收到预期效果。
我国现有电力系统安全稳定控制框架已为上述各项研究提供了理论基础与实施基础,本文研究无需新增通信设备、信道、稳控系统等硬件设施,且算例研究表明所提方法已具备一定的可行性与有效性。