TA2表面电镀与激光重熔改性制备Ti-B/Ti-Ni复合改性层的组织与性能

来源 :南昌大学 | 被引量 : 0次 | 上传用户:RS2322ABC
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
钛及钛合金是一种轻质、比强度高和耐腐蚀性好的结构金属,因其综合性能优异,开发潜力巨大,被广泛应用于众多关系国家经济命脉的工业制造领域。然而,由于其硬度低、表面摩擦系数高、耐磨性较差等不可避免的问题,使得钛及钛合金的进一步应用受到了一定制约。通过表面改性处理既可以保留钛及钛合金的性能优势又能以较低成本提升其表面性能,已经成为钛合金应用领域的研究热点之一。采用激光技术对钛合金进行表面改性时常用粉末预置层作为熔覆材料,该方法操作简单,实用高效,但是存在致密度低,结合力弱易导致飞溅,会引入杂质成分易产生气孔夹杂缺陷等不足。本文采用电镀和激光重熔相结合的表面改性方法以避免上述不足,探究了通过多技术复合工艺制备的改性层的组织与性能。本实验选用综合性能适中的工业纯钛TA2为实验基材,采用复合电镀制备Ni-TiB2预置层和Ni-B预置层分别作为熔覆材料,研究通过不同方式获得TiB晶须和TiB2颗粒增强的Ti-Ni金属间化合物复合改性层的组织与性能。微观组织分析表明,复合改性层中出现了明显的相分层现象,其中TiNi相占据了复合改性层从表面至底层的大部分区域,而Ti2Ni相主要存在于改性层与TA2基体接触的底层区域,呈细长条状分布,上下两边分别与顶层TiNi相和TA2基体存在清晰的分界面。对Ni-TiB2与Ni-B预置层进行激光重熔处理后均可获得TiB-TiB2/TiNi-Ti2Ni复合改性层,前一种方式所得复合改性层中的TiB晶须为TiB2与Ti反应所得,TiB2颗粒为反应残余相;后一种方式所得复合改性层中的TiB晶须和TiB2陶瓷颗粒都为B与Ti通过一步或多步原位反应所得。TiB-TiB2陶瓷增强相极大的提升了复合改性层的硬度与耐磨性,Ni-TiB2预置层经激光重熔处理后的复合改性层硬度高达9.07 GPa,比TA2基体提高了336%,比不含陶瓷增强相的纯Ti-Ni改性层提高了158%;Ni-B预置层经不同的激光参数重熔处理后的复合改性层的硬度较TA2基体提升提高了322%~371%。此外,Ni-TiB2预置层和Ni-B预置层分别经激光重熔处理所得的复合改性层的测试实验磨损率均比TA2基体大幅度降低,其中前者降低了88.93%,后者降低了90.03%~93.17%,都表现出良好的抗磨损性能。
其他文献
随着可生物降解金属材料的发展,镁基合金和铁基合金均因为降解速率及降解时的并发症等问题陷入技术瓶颈。Zn基合金则是在前两者的基础上开发出的新型可生物降解材料。它具有更优异的降解性能和生物相容性,但纯Zn的力学性能较差。因此,本文通过添加不同含量Zr、Ag以及对各成分铸态合金进行轧制,研究合金元素Zr、Ag和热轧对Zn-1.5Cu-yAg-xZr合金微观组织、力学性能和降解性能的影响。其结果如下:合金
随着社会不断发展、人们生活水平的不断提高以及体力劳动的日益减少,全球范围内肥胖患者越来越多。肥胖已被WHO列为与艾滋病、吸烟齐名的三大人体健康杀手。胰脂肪酶是胰腺合成和分泌的主要脂解酶,在甘油三酯的高效消化过程中起着关键的作用。胰脂肪酶负责膳食脂肪总量50–70%的水解,将饮食中的脂肪分解成甘油单酯和脂肪酸后,被人体重新吸收合成自身所需脂肪。过多的脂肪堆积容易造成肥胖并引起冠心病、高血糖、心脏病、
流变铸造因其流程短、近终成形和成本低等优点,在轻量化领域有很好的应用前景。半固态浆料制备是流变铸造的核心,一直为研究热点和前沿。本文旨在自主开发倾转-振动法,以A356铝合金为研究对象,采用实验与AnyCasting数值模拟相结合的方法,重点研究倾转-振动条件下流场与温度场的变化,工艺参数和晶粒细化剂对半固态浆料微观组织的影响,结合三维重构探讨了半固态浆料微观组织形成机理,主要结论如下:(1)An
全世界约有1%左右的人口对麸质过敏,目前对乳糜泻患者唯一安全有效的治疗方法是终身严格遵守无麸质饮食,以促进小肠黏膜及时恢复。面包是人们的主食之一,糙米营养丰富有望弥补无麸质面包营养不均衡的缺陷。但是糙米制品由于其高含量的膳食纤维,通常口感粗糙,适口性差。粉碎是提高糙米适口性的有效方法之一,因此本文研究了低温冲击磨(Low temperature impact mill,LTIM)粉碎对糙米粉营养成
藏红花素(Crocin,Cro)是由藏红花酸和龙胆二糖或葡萄糖形成的一系列酯类化合物,主要分布于栀子和藏红花中,是自然界中为数不多的水溶性类胡萝卜素。研究表明,藏红花素具有多种生理活性功能,如抗炎症,抗动脉粥样硬化,抗糖尿病等。然而在食品加工和储存过程中藏红花素的生物活性极易受到环境条件(如:光、热、氧、p H值)和食品添加剂的影响,导致稳定性偏低。酪蛋白(Casein,CN)作为一种天然的营养蛋
超细/纳米晶WC-Co硬质合金具有“双高”性能(高硬度和高强度),被广泛用作于集成电路板、精密模具等领域的切削加工材料,是硬质合金领域重要的研究分支。而纳米粉末的制备、晶粒长大抑制剂和烧结技术是超细/纳米晶硬质合金主要研究方向。本论文采用实验室自制的超细/纳米WC粉和市售Co粉为主要原料,添加适量的VC和Cr3C2作为晶粒长大抑制剂,利用真空烧结及热压烧结技术来制备超细/纳米晶WC-9.5Co硬质
提升镁合金的强度和室温下的韧性是拓宽镁合金应用的关键。根据Hall-petch公式,镁合金的晶粒尺寸对镁合金的室温性能有着很大的影响,通过减小镁合金的晶粒尺寸来提高其力学性能是研究的热点。超声振动通过独有的空化及声流效应对于细化镁合金的晶粒尺寸有着重要意义。本文利用直接超声振动来制备AZ91D镁合金半固态浆料,系统的研究了超声振动制备浆料工艺,并通过三维重构分析了超声振动对浆料微观组织影响机理。获
随着全球污染和石油资源逐渐匮乏等问题日益严峻,对车身“轻量化”研究提出了更高的要求。传统轻质高强钢诸如双相钢(DP)、相变诱发塑性钢(TRIP)、无间隙原子钢(IF)和奥氏体钢等,因生产成本、冶金和加工性能等问题限制了其应用。中锰TRIP钢(Mn含量4~12%)基体组织由奥氏体和铁素体构成,兼具优异的强度和塑性,已报到的研究表明其强塑积(抗拉强度和断后延伸率的乘积)可达30~60GPa%,具有极高
植物油在高温精炼的过程中易形成较高含量的潜在危害物氯丙醇酯,其在胃肠道消化的过程中会转化为游离态的氯丙醇,而氯丙醇具有一般毒性、生殖毒性、致癌性和遗传毒性。近年来,大量的研究致力于减缓植物油或者其他食物中氯丙醇酯的量,其中,一些研究通过添加抗氧化剂的方法来减缓氯丙醇酯的生成。然而,据我们所知,植物油中本身含有大量的抗氧化成分,比如生育酚,植物甾醇和角鲨烯等。因此,本文通过添加这些内源性的抗氧化成分
汽车行业对轻量化,环保化的需求越来越高,特别是新能源汽车的发展,使得汽车行业对车用结构材料的关注日益提升。但由于镁合金的耐腐蚀性能差,这大大限制了它在工业领域上的大规模应用。近年来,向Mg-Zn合金中加入稀土元素得到的Mg-Zn-RE合金引起了研究者的极大兴趣。其中轻稀土元素La和Ce加到Mg-Zn合金中,会形成多种金属间化合物。本文通过向Mg-4Zn合金中添加轻稀土La和Ce,通过微观结构表征和