【摘 要】
:
Fe-Ga合金由于具有高强度、良好韧性、低场高磁致伸缩性能和低成本等优异特性,近年来成为新型巨磁致伸缩材料受到广泛关注。Fe-Ga合金的磁致伸缩性能具有明显的各向异性,并需要加工成薄片状以降低高频使用产生的严重涡流损耗。因此,通过添加抑制剂抑制初次晶粒长大并获得二次再结晶Goss晶粒,是提升Fe-Ga合金磁致伸缩的主要手段。目前Fe-Ga合金薄带主要采用微米尺寸的NbC析出相作为抑制剂钉扎初次晶粒
论文部分内容阅读
Fe-Ga合金由于具有高强度、良好韧性、低场高磁致伸缩性能和低成本等优异特性,近年来成为新型巨磁致伸缩材料受到广泛关注。Fe-Ga合金的磁致伸缩性能具有明显的各向异性,并需要加工成薄片状以降低高频使用产生的严重涡流损耗。因此,通过添加抑制剂抑制初次晶粒长大并获得二次再结晶Goss晶粒,是提升Fe-Ga合金磁致伸缩的主要手段。目前Fe-Ga合金薄带主要采用微米尺寸的NbC析出相作为抑制剂钉扎初次晶粒长大,借助表面能的作用诱导二次再结晶Goss晶粒。但是针对现行微米尺寸抑制剂钉扎力缺陷,需要引入额外的驱动力促进Fe-Ga合金的二次再结晶。因此,需调控抑制剂特征演变,获得对Goss晶粒有效钉扎和择优失效,以便获得可简单高效的二次再结晶Fe-Ga合金薄带的制备方法。本研究通过构建复合抑制剂体系,制备出具有完善二次再结晶Goss织构特征的Fe-Ga合金薄带。结合宏/微观微结构、第二相颗粒与织构表征方法,揭示轧制与退火过程中组织、织构与抑制剂特征的演变规律,阐明二次再结晶织构的形成与发展机制,主要创新点与结论如下:(1)基于固有复合抑制剂体系(MnS+Cu2S)的构建,通过成分设计、轧制与退火工艺流程调控,在二次冷轧Fe-Ga合金薄带中获得纳米尺寸析出相,在初次再结晶与慢升温初期有效钉扎初次晶粒长大,并在慢升温过程中促进二次晶核形成与长大,最终获得具有二次再结晶Goss织构和优良磁致伸缩性能。(2)二次冷轧板形成的强γ织构,有利于初次再结晶强{111}<112>织构的形成,初次再结晶高分数的细小{111}<112>晶粒为Goss晶粒的异常长大提供组织与织构基础。基于析出相尺寸和分数的临界晶粒计算表明,在低于950℃时较小的Rm/和较窄的晶粒尺寸分布有利于抑制初次晶粒长大,而升温至1000℃过程中,Goss借助特殊位向关系优先脱钉长大导致晶粒尺寸分布的宽化,促进二次再结晶的进行。(3)基于固有抑制剂(MnS+Cu2S)和后天渗氮抑制剂(NbN),通过热轧、常化和后期渗氮工艺保证纳米抑制剂的析出,抑制初次晶粒长大促进二次晶核形成,获得具有近厘米尺寸的Goss晶粒和优良磁致伸缩性能的Fe-Ga合金薄带。(4)本研究提出通过抑制剂体系的选择和轧制退火工艺的调控,制备具有二次再结晶Goss织构特征的Fe-Ga合金薄带的简单高效制备方法,未来需通过轧制与退火工艺参数的优化,进一步提高Fe-Ga合金薄带的磁致伸缩性能。
其他文献
3D打印技术是通过利用三维软件进行建模设计操作,采用材料逐层累加的方法制造实体零件的一种技术,相对于传统的材料去除(切削加工)技术,是一种“自下而上”材料累加的制造方法。3D打印技术尤其适用于小批量、个性化定制零件的加工生产过程。3D打印概念的提出始于20世纪80年代后期,我国则于90年代初开始研究。经过短短20余年的时间,这-技术已取得了飞速发展,在生物医学工程、微纳制造、航空航天等诸多领域的应
镁锂合金作为一种超轻金属结构材料具有高的比强度、比刚度,卓越的电磁屏蔽特性和优良的阻尼导热特性等性能,在航空、3C、交通运输等领域得到广泛的应用。然而α单相镁锂合金仍属于密排六方结构,存在着强度低、变形性差等缺点,通过加入Al、Zn以及Y等元素,使合金的强度得到提高,同时通过多向锻造这种大塑性变形的方式,使晶粒细化,改善材料的性能。因此,利用合金化以及多向锻造的方式,提高合金塑性,研究其高温超塑性
黄铁矿是地表含量最丰富的金属硫化矿之一。虽然经济价值不高,但广泛存在于闪锌矿、黄铜矿和方铅矿等有价的矿物中,同时也常见于各种贵金属矿中,黄铁矿作为伴生矿物,将影响其他矿物的浸出行为及氧化剂的消耗等。本文探讨了常压浸出条件下反应温度、硫酸浓度和氧化剂对黄铁矿在硫酸体系中的氧化浸出行为,并利用 X 射线衍射(X-ray diffraction,XRD),扫描电镜—能谱(Scanning electro
随着汽车行业的发展,对汽车轻量化和服役安全性能的要求不断提高,先进高强度钢的应用和发展为此提供了重要途径。孪生诱发塑性(Twinning Induced Plasticity,TWIP)钢不仅具有高抗拉强度和高硬化率,同时具有优异的塑性、韧性和成形性能,大幅度减轻车身自重,在薄规格钢板的情况下仍能保持高的能量吸收性能和抗撞击性能,已成为新一代延性高强钢的重要发展方向之一。焊接工艺是汽车制造技术中不
随着我国铅锌工业的快速发展,我国的高品位的铅锌矿资源越来越少,难处理的铅锌混合矿的利用受到越来越多的重视。但是目前的选矿工艺很难将铅锌混合硫化精矿分选成单一的铅精矿和锌精矿,而且目前能直接处理铅锌混合矿的冶炼工艺ISP法(即帝国熔炼法)还存在着能耗高,环境污染大等技术难题。为实现铅锌混合矿的直接清洁冶炼,课题组与中国恩菲工程技术有限公司合作,提出不经分选的铅锌混合矿喷吹氧气熔融脱硫-喷吹碳质还原剂
建筑隔热涂层的研制与应用是解决建筑节能问题的有效方法。近年来,无机空心球成为了隔热涂层领域的研究焦点。本文从隔热机理出发,设计制备了无机空心球复合材料,研究了反应参数对产物形貌、性能的影响,将其应用于有机-无机隔热涂层,并探究了复合涂层材料的隔热性能和相关光学性能。通过搅拌浸渍法制备了空心玻璃微球/Si-Al气凝胶复合粉体,成功制备了不同配比的以气凝胶包裹空心玻璃微球的复合粉体。研究了复合粉体的隔
压电复合材料以其同时具备高压电性能、低阻抗和低机械品质因数的性能特点而受到了水声换能器、医学检测等研究领域的广泛关注。本实验室曾创新性地提出了一种具有螺旋结构压电陶瓷相的复合材料,初期研究结果显示这种连通结构的压电复合材料具有优异的综合性能。本文采用了轧膜-卷曲成型法制备了螺旋结构的PZT-PZN-PNN陶瓷材料,使用硅烷偶联剂KH560和钛酸酯偶联剂NDZ201对陶瓷相表面进行改性,再将螺旋陶瓷
面对细菌耐药性带来的日益严峻的健康问题,新的抗菌策略亟需发展。目前,随着光响应材料的快速发展,光动力及光热抗菌发展为了能够替代传统抗生素治疗的抗菌手段。在论文中,我们对铜基金属有机框架(MOF)材料HKUST-1进行原位硫化处理,使在其结构中生成具有光响应性能的硫化铜纳米颗粒(CuS NPs),从而赋予MOF材料良好的近红外光响应能力。优异的光动力性能,光热性能以及缓慢的铜离子释放,使得制备的MO
齿轮传动系统作为机械传动的核心可靠传动方式,有着无可替代的作用。齿轮传动的可靠性和振动特性直接影响着机器整体的噪声和寿命,当齿轮产生裂纹或者剥落故障时,如果未能及时发现可能会存在较大的安全隐患,所以对其开展故障建模、故障机理及故障诊断研究具有非常重要的工程实际意义。本文以直齿轮为研究对象,考虑延长啮合、基体修正等因素影响,建立了空间非穿透裂纹模型。在此基础上,针对斜齿轮副,建立了考虑空间裂纹和剥落
超材料是一种通过人工设计而成的材料,具有自然界材料中所不具备的一些特殊的物理性质,例如负折射率、负电导率和负磁导率等。太赫兹波位列微波与红外波之间,除了具备微波与红外波的一些特性之外,太赫兹波光子能量小,可应用于生物组织细胞的检测,也可以应用到通信相关领域,具有微波所不能达到的通信速率。本论文主要在太赫兹波段下对超材料产生的类电磁感应透明效应进行研究,其研究特点主要分为以下几个方面:(1)本文以太