论文部分内容阅读
钇稳定氧化锆及氮化硅是先进结构陶瓷材料,氧化锆的相变增韧特性和优异的力学性能,使其被广泛应用在齿科材料、人体骨骼、陶瓷刀具等方面,氮化硅陶瓷具有低密度、高强度、耐磨、耐腐蚀、抗热震等性质而广泛应用于切割工具、发动机部件及金属成型模具等,但他们也具有陶瓷的固有脆性及烧结惰性,研究高致密度的陶瓷制备工艺及进一步增韧是陶瓷研究的重要任务。放电等离子烧结采用脉冲电流通电加热加压方式,具有升温快、烧结温度低、烧结时间短、密度高、降低晶粒长大等特点,有利于提高材料的强度及韧性,是陶瓷材料烧结的重要新技术。本工作在对商用钇稳定氧化锆陶瓷进行放电等离子烧结(SPS)工艺研究的基础上对机械混合法及化学共沉淀法制备Al2O3/YSZ(3 mol%Y2O3)复合粉末进行放电等离子烧结研究;以Al2O3-YSZ、Al2O3-AlN-Yb2O3及Al2O3-AlN-Yb2O3三个体系为烧结助剂进行了Si3N4陶瓷的放电等离子烧结并研究了它们的物相、组织及力学性能,最后研究了TiC0.3N0.7对以Al2O3-AlN-Yb2O3为烧结助剂烧结的β-Sialon陶瓷性能的影响,获得如下结论:(1)采用机械混合法及化学共沉淀法制备了25 Al2O3-ZrO2(wt.%)复合粉末并进行了放电等离子烧结研究,研究表明:机械混合法制备的25 Al2O3-ZrO2(wt.%)复合粉末,烧结前后均为钇稳定氧化锆四方主相T-YSZ与α-Al2O3相的混合物,未发现有Al固溶到T-YSZ中,α-Al2O3相粗大,周围缺陷较多,在烧结温度1300℃,保温10 min,烧结压力20 MPa时获得最佳的力学性能,其维氏硬度为15.14 GPa,断裂韧性为4.27 MPa m1/2;而采用共沉淀法制备的25 Al2O3-ZrO2(wt.%)复合粉末,获得了单一的四方相固溶体T-(YA)SZ,所有Al原子溶入T-YSZ相中,经SPS烧结后有微量的α-Al2O3相析出,微量细小的α-Al2O3相均匀分布在T-YSZ基体中,表现出较好的断裂韧性,在烧结温度1200℃,烧结时间10 min及烧结压力20 MPa下获得最佳样品,维氏硬度为14.75 GPa,断裂韧性为5.40 MPa m1/2。(2)以α-Si3N4为原料,6.0 wt.%Al2O3、6.0 wt.%YSZ为烧结助剂,进行β-Si3N4陶瓷的放电等离子烧结研究,当烧结温度为1600℃,保温时间为15 min,烧结压力为45MPa时获得了完全致密的β-Si3N4陶瓷,β-Si3N4晶粒形成互锁显微组织,具有优异的力学性能,其维氏硬度为16.15 GPa,断裂韧性为6.75 MPa m1/2。(3)为避免样品与石墨模具在高温高压下反应,本实验以Al2O3、AlN、Yb2O3为助烧剂,采用先无压后加压两步SPS烧结法制备了高性能的β-Sialon陶瓷。第一步:混合粉末经球磨、冷等静压成型及无压SPS烧结获得相对密度较高,达到3.23 g/cm3、α相转β相较为完全并具有晶粒互锁组织,硬度及断裂韧性较高,分别达到15.46 GPa及6.47 MPa m1/2的β-Sialon陶瓷。第二步:将第一步烧结的样品进行加压烧结,样品的密度进一步提高到3.25 g/cm3,硬度达到16.13 GPa。热导率随助烧剂含量的增加而减小,室温热导率为16.9 W m-1 K-1。(4)以Al2O3、AlN、Yb2O3为助烧剂,采用两步放电等离子法制备了添加TiC0.3N0.7的β-Sialon陶瓷,研究了TiC0.3N0.7对β-Sialon陶瓷物相、组织、性能的影响。实验表明:经第一步无压及第二步加压两步烧结得到样品结晶相几乎为β-Sialon相及微量TiC0.3N0.7相,中间过程出现了微量的过渡相Yb2Si3N2O5,Yb4Si2N2O7,TiC0.3N0.7相均匀分布在β-Sialon基体中,对裂纹的扩展起阻碍作用,提高了材料的断裂韧性。添加1.0 wt.%TiC0.3N0.7时,β-Sialon陶瓷的断裂韧性达到7.67 MPa m1/2,比未添加TiC0.3N0.7时的6.47MPa m1/2提高了18.5%,维氏硬度为15.73 GPa,室温热导率为13.6 W m-1 K-1。