论文部分内容阅读
作为人工增雨反作用的人工消减雨作业,在减弱强暴雨灾害、保障大型露天活动顺利进行以及更深入的认识人工增雨等方面都有重大的意义。然而目前已有研究对人工消减雨的可行性、作业方法尚未明确,对于减雨机制尚不清楚。本文通过在中尺度WRF模式中的Thompson微物理方案中耦合碘化银与云相互作用模块,考虑了 AgI的三种核化机制,在中尺度模式中实现了催化功能。由此来研究人工消减雨的可行性、方法及减雨机制。通过对2014年8月16日南京青奥会开幕式期间的降水过程进行模拟,同时分析云物理特征以及降水粒子源汇项,结果表明:1)结合地面累积降水、高空500hPa环流形势、雷达回波、卫星云图实况与模拟结果的对比可知,WRF模式模拟的效果较为理想,对于降水环流形式、云团分布以及地面降水的落区模拟很好,结果可以用于后续的研究。2)本次降水的云水含量低,雪、霰和冰晶的含量少,且垂直运动发展不旺盛,是一次积层混合云降水过程。3)输出各降水粒子的源汇项发现:雨水的主要汇项为雨滴的蒸发,而最大的源项为雪的融化,其次为雨滴碰并云滴增长,在降水发展旺盛期如10时到13时还有少量霰的融化,霰融化对雨水的贡献比雪要小两个量级,说明此次降水过程中雪对降水的贡献要远大于霰的贡献。通过使用在Thompson微物理方案中耦合了 AgI的WRF模式模拟实际催化作业,发现:1)AgI的核化机制为接触冻结核化,核化率大约为3.5%。2)就整个模拟区域而言,AgI的引入会引起模拟区域水汽的重新分布,而水汽的总量保持不变,其次云滴浓度有微弱变化,主要变化为AgI核化增加了云冰的含量和数浓度。3)播撒碘化银后地面降水减少主要原因为AgI作为人工冰核进行核化使冰晶数量大量增加,从而使冰晶转化为雪的数量增加;同时人工冰核进行核化后消耗大量水汽,雪的凝华增长减弱,形成更多小尺度雪晶。小尺度雪晶融化形成小尺度雨滴,小雨滴易蒸发且下落末速度较小,因此造成地面降水减少。通过对播撒率、播撒高度、播撒开始时间和持续时间分别作敏感性试验,发现过量播撒AgI确实可起到减雨的效果。在一定范围内,随着播撒量的增大,减雨率会有所增大,但无限增加播撒量并不能让减雨效率无限增加。在-5 温度以下播撒碘化银减雨效果更好,同时考虑到水汽条件,进而寻找适当位置播撒。持续时间同播撒率类似,在一定时间内增大持续时间会使减雨率增大,但同样并不是无限制增大。